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Abstract

This paper introduces the MCT Self-Refine (MCTSr) algorithm, an innovative
integration of Large Language Models (LLMs) with Monte Carlo Tree Search
(MCTS), designed to enhance performance in complex mathematical reasoning
tasks. Addressing the challenges of accuracy and reliability in LLMs, particularly
in strategic and mathematical reasoning, MCTSr leverages systematic exploration
and heuristic self-refine mechanisms to improve decision-making frameworks
within LLMs. The algorithm constructs a Monte Carlo search tree through it-
erative processes of Selection, self-refine, self-evaluation, and Backpropagation,
utilizing an improved Upper Confidence Bound (UCB) formula to optimize the
exploration-exploitation balance. Extensive experiments demonstrate MCTSr’s
efficacy in solving Olympiad-level mathematical problems, significantly improving
success rates across multiple datasets, including GSM8K, GSM Hard, MATH,
and Olympiad-level benchmarks, including Math Odyssey, AIME, and Olympiad-
Bench. The study advances the application of LLMs in complex reasoning tasks
and sets a foundation for future AI integration, enhancing decision-making ac-
curacy and reliability in LLM-driven applications. Codes publicly accessible at
github.com/trotsky1997/MathBlackBox.

1 Introduction

With the rapid evolution of artificial intelligence, large language models (LLMs) such as GPT-
4 (Achiam et al., 2023) and LLaMA (Touvron et al., 2023) have become fundamental in advancing
natural language processing (NLP) capabilities. These models, characterized by their multi-billion
parameter architectures, exhibit remarkable language comprehension and generation abilities. Their
emergent properties, including reasoning and in-context learning, have opened new avenues for
addressing complex NLP tasks beyond traditional domains, encompassing mathematical problem-
solving (Yu et al., 2023; Yuan et al., 2023), recommendation systems (Lyu et al., 2023), and even
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Figure 1: Agents can learn decision-making and reasoning from the trial-and-error as humans do.

molecule generation (Liang et al., 2023). However, despite these advancements, LLMs face notable
challenges in areas demanding strategic and logical reasoning.

One significant hurdle is the accuracy and trustworthiness of the outputs. Especially in mathematical
contexts, where precision is paramount, the reasoning capabilities of LLM always suffer from prone
to producing hallucinations—outputs (Huang et al., 2023) that, while superficially plausible, but
irrelevant or factually incorrect, are finally harmful to rational processes. Though rewriting techniques
like Self-Refine (Madaan et al., 2023) can help relieve, this tendency can still lead to misleading or
wrong outcomes in real-world complex mathematical problems.

To address these challenges, this paper proposes MCT Self-Refine (MCTSr), an integration of
LLMs with a Monte Carlo Tree Search (MCTS) algorithm (Chaslot et al., 2008), focusing on
enhancing LLMs’ performance in complex mathematical reasoning tasks, such as those encountered
in mathematical Olympiads. MCTS, a decision-making tool widely used in AI for scenarios requiring
strategic planning, is typically employed in gaming and complex problem-solving environments. By
combining MCTS’s systematic exploration capabilities with LLMs’ capabilities of Self-Refine and
Self-Evaluation, we aim to create a more robust framework for tackling intricate reasoning tasks that
current LLMs struggle with.

Several technical challenges exist in adapting MCTS for LLM integration. Traditional MCTS
strategies may not align well with the stochastic and generative nature of LLM outputs, which often
involve an infinite, continuous space of potential actions. This misalignment necessitates a tailored
approach to expectation calculation and Backpropagation within the MCTS framework to better
suit the unique characteristics of LLMs. Furthermore, we introduce a dynamic pruning strategy
incorporating an improved upper confidence bound (Srinivas et al., 2009) (UCB) formula to optimize
the exploration-exploitation balance essential for effective decision-making in high-stakes tasks.

Our primary contributions are as follows:

We develop and validate a novel reasoning algorithm by integrating LLMs with UCT-MCTS. We
enhance the algorithm’s key components to accommodate the integration with LLMs better and
demonstrate its effectiveness on Olympic-level mathematical problems.

We propose a dynamic pruning module that refines decision-making processes within the MCTS
framework, facilitating more efficient and accurate problem-solving capabilities.

Through extensive experimentation, we provide insights into the synergistic potential of LLMs and
MCTS, showcasing improved performance in complex reasoning tasks.

This research advances the application of LLMs in sophisticated reasoning challenges. It sets the
stage for future innovations in integrating AI technologies for enhanced decision-making, reasoning
accuracy, and reliability of LLM-driven applications.
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2 Preliminary

This section introduces the preliminary and notations used in this work. We will first detail the
mechanism of Monte Carlo Tree Search (MCTS) and, essential for understanding the novel dynamic
Monte Carlo Tree Self-refine

Monte Carlo Tree Search (MCTS) is a decision-making algorithm widely used in games and
complex decision processes, which operates by building a search tree and simulating outcomes to
estimate the value of actions. It involves four key phases (Browne et al., 2012): Selection, based
on the UCT strategy to maximize the potential; expansion, where new nodes are added; simulation,
to foresee possible outcomes; and Backpropagation, updating the node values based on simulation
results. Typically, the MCTS algorithm comprises four distinct phases:

• Selection: Starting from the root, the algorithm navigates through promising child nodes
based on specific strategies (e.g., UCT), continuing until a leaf node is reached.

• Expansion: At the leaf node, unless it represents a terminal state of the game, one or more
feasible new child nodes are added to illustrate potential future moves.

• Simulation or Evaluation: From the newly added node, the algorithm conducts random sim-
ulations—often termed "rollouts"—by selecting moves arbitrarily until a game’s conclusion
is reached, thereby evaluating the node’s potential.

• Backpropagation: Post-simulation, the outcome (win, loss, or draw) is propagated back to
the root, updating the statistical data (e.g., wins, losses) of each traversed node to inform
future decisions.

Repeatedly iterating through these stages, MCTS incrementally constructs a decision tree, refining
strategies for optimal decision-making in scenarios where direct calculation of the best strategy is
infeasible due to the vastness of the state space.

Upper Confidence Bound applied on Trees Algorithm is crucial for the selection phase in MCTS,
balancing exploration and exploitation by choosing actions that maximize:

UCTj = X̄j + C

s
2 lnNC

Nj
(1)

Where X̄j is the average reward of action j, NC is the total visited times of the father node, and nj is
the number of times node j has been visited for simulation, C is a constant to balancing exploitation
and exploration.

MCT Self-Refine algorithm represents an integration of Monte Carlo Tree Search (MCTS) with large
language models, abstracting the iterative refinement process of mathematical problem solutions into
a search tree structure. Nodes on this tree represent different versions of answers, while edges denote
attempts at improvement. This algorithm’s operational workflow adheres to the MCTS algorithm’s
general pattern. Detailly, We employ self-reflective driven self-improvement for refining answers;
rewards for different answer versions are sampled using the model’s self-reward capability.

To facilitate understanding of the MCTSr algorithm, the following symbols and functions are defined:

• P : The problem instance being addressed.
• A: The set of nodes, each representing a potential answer to P .
• M : The set of actions available at each node, representing possible self-refine modifications

to an answer.
• R: A function that samples self-rewards for nodes based on the quality and effectiveness of

the modifications.
• Ra: A Set that stores all self-rewards sampling results of node a with self-rewards function
R.

• T : A function determining the termination of the search process based on criteria such as
reaching a maximum number of iterations or achieving satisfactory answer quality.
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• Q(a): A value function estimating the worth of an answer node a, derived from accumulated
rewards Ra and backpropagations from children nodes.

• U(a): The Upper Confidence Bound for the Q value of node a to balance between exploita-
tion and exploration.

• Father(a): A function returning the parent node of a given node a. If a is a root node, this
function returns null or a specific identifier.

• Children(a): A function returning the set of all child nodes for a given node a, representing
all possible states derived from a by executing actions m 2 M .

• N(a): The total number of visits to node a, used to calculate its UCB value and assess
exploration and exploitation status. Since we will sample a reward for each visit, this value
equals |Ra|.

3 Methodology

In this section, we will first demonstrate the main structure of MCTSr, shown in Figure 1. Then, we
will detail each component The main workflow of MCTSr is structured as follows:

• Initialization: A root node is established using either a naive model-generated answer and a
dummy response (e.g., ’I don’t know.’) to minimize model overfitting tendencies.

• Selection: The algorithm employs a value function Q to rank all answers that were not fully
expanded and selects the highest-valued node for further exploration and refinement using a
greedy strategy.

• Self-Refine: The selected answer a undergoes optimization using the Self-Refine frame-
work (Madaan et al., 2023). Initially, the model generates a feedback m, guiding the refining
process to produce an enhanced answer a0.

• Self-Evaluation: The refined answer is scored to sample a reward value and compute its
Q value. This involves model self-reward feedback and constraints such as strict scoring
standards and suppression of perfect scores to ensure reliability and fairness in scoring.

• Backpropagation: The value of the refined answer is propagated backward to its parent
node and other related nodes to update the tree’s value information. If the Q value of any
child node changes, the parent node’s Q is updated.

• UCT update: After the Q values of all nodes are updated, we identify a collection C of
candidate nodes for further expansion or Selection, then use the UCT update formula to
update the UCT values of all nodes for the next Selection stage.

The algorithm iterates through these stages until a termination condition T is met, including rollout
constraints or maximum exploration depth, continuously refining the quality of answers, and exploring
new possibilities.

3.1 Self-Refine

In the self-refine process, the model is guided by a multi-turn dialogue refine prompt to optimize an
answer a to problem P . Initially, the model generates a reflective or critical comment m regarding a.
Subsequently, guided by m, the model modifies a to produce an improved version a0. This iterative
refinement enhances the quality of the response, leveraging structured feedback to drive the evolution
of the answer.

3.2 Self-Evaluation

In the refining process for mathematical problem P , the Q value of an answer a is defined as the
expected quality of further refining a into a superior answer, owing to the Markovian nature of the
transition from a to its rewritten forms. Unlike traditional MCTS where Q(s, a) estimates the value of
action a in state s, Q(a) here derives from multiple samplings of the reward function values attributed
to a.
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The model utilizes a self-reward method to estimate rewards for a, where it is required to provide a
reward score ranging from -100 to 100. We find that without constraints, the model’s reward tendency
is overly smooth, leading to a lack of comparative distinction between answers in practice. To address
this, three constraints are designed:

• Prompt Constraint: The model must adhere to the strictest standards during reward scoring.
• Full Score Suppression: The model is instructed not to provide full feedback scores; any

reward above 95 is reduced by a constant amount to curb excessive scores.
• Repeated Sampling: Each visit to a search tree node involves the repeated sampling of

the node’s rewards to enhance the reliability of the Self-Evaluation. It should be noted that
when reward sampling is performed on the child nodes of a node, we will also perform
reward sampling on its parent node to increase the sample size of reward sampling.

Post sampling, the Q value of a is calculated. To counteract the smoothing tendency of the self-reward
function, a minimum value constraint is added to the expected reward, further refining the estimation
of answer quality,

Q(a) =
1

2

✓
minRa +

1

|Ra|
⌃|Ra|

i=1 R
i
a

◆
(2)

where Q(a) is the quality value of answer a, Ra is the set of reward samples for a, minRa is the
minimum reward in Ra, |Ra| is the number of samples, and ⌃|Ra|

i=1 R
i
a is the sum of all rewards in Ra.

This formula calculates Q(a) by averaging the rewards’ minimum and mean, balancing worst-case
and average outcomes.

3.3 Backpropagation

After all leaf nodes’ reward value sampling and Q value update are completed, we will propagate this
change to its parent and ancestor nodes. During this update process, if the Q function value of any
element in the child node set Children(a) of a node a changes, the Q function value of the node is
updated to

Q0(a) =
1

2

✓
Q(a) + max

i2Children(a)
Q(i)

◆
(3)

Where Q0(a) is the updated quality value of answer a that consider the impact from its children
nodes, Q(a) is the naive quality value only consider its reward samplings, and maxi2Children(a) Q(i)
represents the highest quality value among the children of a. This formula refines Q(a) by averaging
the current value and the best possible outcome from its subsequent Children nodes.

3.4 Update UCT and Selection

After updating the Q values across all nodes in the tree, we proceed to the selection phase for the
next round of choices. This process includes the following steps:

Candidate Node Selection: Leveraging the Markovian nature of the mathematical problem refine
process, we focus on selecting all leaf nodes and those that are not fully expanded, disregarding the
history of refine paths is feasible. This path-independent property helps simplify our problem. We
no longer need to start from the root node when selecting nodes but traverse the nodes in the tree in
hierarchical order.

But given that Large Language Models (LLMs), which play as policy in this task, can generate an
infinite number of refine actions m for any answer state a, each node potentially faces an unbounded
set of actions for expansion. Thus, drawing from the concept of Expectation Improvement in Bayesian
optimization, we propose two criteria for determining "full expansion":

• The node’s children count reaches a predefined limit. And,
• At least one child node’s Q value exceeds the node’s.

5



We identify a collection C of candidate nodes based on these criteria for further expansion or
Selection. This strategy helps accurately define which nodes might yield higher-value answers in
subsequent searches, enhancing overall search efficiency and outcome quality.

UCT Update: Drawing from AlphaGo, we use UCT with the UCB-1 method to balance the
exploration and exploitation of nodes; for node a in the candidate set C, its UCTa value is,

UCTa = Q(a) + c

s
lnN(Father(a)) + 1

N(a) + ✏
(4)

where Q(a) is the Q value of answer a, N(·) is the total visited times of given nodes, c is a constant
to balancing exploitation and exploration, ✏ is a small constant for avoid devided-by-zero.

Sorting and Selection: According to the UCT value of the candidate set C, we can select an optimal
node to explore the refining process through greedy sampling or importance sampling.

3.5 Termination Function

In MCTSr algorithms, search termination function criteria T can derive from several conditions:

Early Stopping: Termination occurs when improvements in search results diminish or when consec-
utive searches yield repetitive outcomes.

Search Constraints: The search terminates once the number of rollouts reaches a predetermined
limit or when one or more nodes in the tree satisfy the maximum depth constraint.

Advanced Criteria Based on Language Model Logits: The search concludes based on predefined
metrics derived from the language model’s logits.

Once the Termination Function condition T is satisfied, we can gather the best answers from tree
nodes according to Q values or other conditions.

4 Evaluation

4.1 Experiment Settings

To assess the MCTSr algorithm’s effectiveness in solving mathematical problems, we employed
LLaMA3-8B (Meta AI, 2024) as the foundational model, enhanced with MCTSr. Detailed prompt
settings are provided in the appendix. We compared LLaMA3-8 B’s performance across several
configurations—Zero-Shot CoT (Wei et al., 2022), Self-Refine, 4-rollouts MCTSr, and 8-rollouts
MCTSr—against the performances of GPT-4 (Achiam et al., 2023), Claude 3 (Anthropic, 2024) and
Gemini 1.5-Pro (Reid et al., 2024), which are the latest state-of-the-art closed-source models. These
comparisons were conducted on various datasets, including GSM8K (Cobbe et al., 2021), GSM
Hard (Gao et al., 2022), MATH (Hendrycks et al., 2021), AIME (AIME, 2024), Math Odyssey (AGI
Odyssey, 2024), and OlympiadBench(pure-text subset) (He et al., 2024).

4.2 GSM Benchmarks

We evaluated the above methods on the test sets of GSM8K and GSM-hard, which involved typical
and challenging mathematical problems, respectively. The results are shown in Table 1.

We can find that results reveal a direct correlation between the number of MCTSr rollouts and success
rates, significantly improving as iterations increase, especially in the less complex GSM8K. However,
the more intricate GSM-Hard set showcased a performance ceiling even at higher rollouts, indicating
the limits of current strategies against complex problems.

These insights underscore the MCT-Self-refine algorithm’s robustness and potential boundaries,
highlighting the necessity for ongoing enhancements to tackle more complex challenges effectively.
This work demonstrates the algorithm’s capacity to enhance problem-solving performance and its
varying efficacy across problem complexities, suggesting areas for future refinement in educational
technology and automated reasoning.
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Datasets Zero-Shot One-turn 4-rollouts 8-rollouts Example
CoT Self-refine MCTSr MCTSr Nums

GSM8K 977 1147 1227 1275 131974.07% 86.96% 93.03% 96.66%

GSM-Hard 336 440 526 600 131925.47% 33.36% 39.88% 45.49%

Table 1: Performance of MCTSr on the GSM Dataset

Level Zero-Shot One-turn 4-rollouts 8-rollouts Example
CoT Self-refine MCTSr MCTSr Nums

level-1 250 314 365 394 43757.21% 71.85% 83.52% 90.16%

level-2 363 474 594 692 89440.60% 53.02% 66.44% 77.40%

level-3 309 454 585 719 113127.32% 40.14% 51.72% 63.57%

level-4 202 368 523 656 121416.64% 30.31% 43.08% 54.04%

level-5 94 177 290 451 13247.10% 13.37% 21.90% 34.06%

Overall 1218 1787 2357 2912 500024.36% 35.74% 47.14% 58.24%

Table 2: Performance of MCTSr on the MATH Dataset

4.3 MATH Benchamark

This section presents the outcomes of applying the MCT-Self-refine (MCTSr) algorithm across
various complexity levels on the MATH dataset. The dataset is stratified into five levels of difficulty,
ranging from level 1 (easiest) to level 5 (most challenging). The algorithm’s performance is evaluated
using four distinct configurations: Zero-Shot CoT, One-turn Self-refine, 4-rollouts MCTSr, and
8-rollouts MCTSr. Each configuration’s efficacy is measured by the number of successfully solved
problems and the corresponding success rates, with a total of 5000 examples across all levels.

Level-1 results demonstrate the highest success rates, with the 8-rollouts MCTSr achieving a remark-
able 90.16% success rate, solving 394 out of 437 problems. This level shows a clear progression in
success rates as rollouts increase.

At the most challenging level-5 part, the 8-rollouts MCTSr configuration yields a 34.06% success
rate, solving 451 out of 1324 problems. This illustrates the increasing difficulty and the algorithm’s
strained performance in highly complex scenarios.

Overall performance across all levels shows a cumulative success rate of 58.24% with the 8-rollouts
MCTSr, solving 2912 out of 5000 problems. This rate demonstrates a substantial enhancement
from the Zero-Shot CoT’s initial rate of 24.36%. The data indicates a consistent trend where the
increase in rollouts correlates with improved success rates, underlining the efficacy of the MCT-Self-
refine algorithm in enhancing problem-solving capabilities across varying levels of mathematical
complexity.

These results validate the MCT-Self-refine algorithm’s potential in academic and problem-solving
contexts and highlight its scalability and adaptability to different levels of problem complexity within
the MATH dataset.

4.4 Olympiad-level Benchmarks

The efficacy of the MCT-Self-refine (MCTSr) algorithm was tested on three datasets from math-
ematical Olympiad competitions: AIME, GAIC Math Odyssey, and OlympiadBench. The GAIC
Math Odyssey dataset, released in April 2024, is notable for its minimal overlap with the pre-training
corpus of the LLaMa3-8B model, providing a robust test of the algorithm’s ability to generalize.
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Datasets Zero-Shot
CoT

One-turn
Self-refine

4-rollouts
MCTSr

8-rollouts
MCTSr

Example
Nums

AIME 22 41 70 110 9332.36% 4.39% 7.50% 11.79%

Math Odyssey 67 118 156 192 38917.22% 30.33% 40.10% 49.36%

OlympiadBench 16 39 67 99 12751.25% 3.06% 5.25% 7.76%

Table 3: Performance of MCTSr on Olympiad-level Datasets

Gemini
1.5-Pro

Claude
3 Opus

GPT-4
Turbo

MATH (Reid et al., 2024) 67.7 60.1 73.4
Math Odyssey (Reid et al., 2024) 45.0 40. 49.1

GSM8K (Papers with Code, 2024) 94.4 95 97.1
Table 4: closed-source LLM performance on mathematical datasets

AIME: From Zero-Shot CoT’s 2.36% (22 problems solved) to 8-rollouts MCTSr’s 11.79% (110
problems solved).

GAIC Math Odyssey: Showed substantial improvement, starting at 17.22% (67 problems solved)
and reaching up to 49.36% (192 problems solved) with 8-rollouts MCTSr.

OlympiadBench: Improved from 1.25% (16 problems solved) in Zero-Shot CoT to 7.76% (99
problems solved) in 8-rollouts MCTSr.

The results demonstrate a clear trend where increased rollouts correlate with higher success rates,
highlighting the algorithm’s potential to improve performance through iterative refinement. The GAIC
Math Odyssey results mainly reflect the MCTSr’s generalization capabilities in new environments.

These findings affirm the MCT-Self-refine algorithm’s robustness and its utility in tackling complex,
unseen mathematical problems, suggesting its applicability in educational technologies aimed at
competitive academic settings like Olympiads.

4.5 Disscussion

We investigated the reported values of the current state-of-the-art closed-source large model SOTA
performance on the above test benchmarks, as shown in the table 4. Comparing the performance
of current closed-source large models, MCTSr can effectively enhance the mathematical reasoning
capabilities of small-parameter open-source models, like LLaMa-3, to a comparable level.

5 Related works

Monte Carlo Tree Search (MCTS) has been widely utilized in various fields to solve complex problems
efficiently. Pitanov et al. (2023) explored the application of MCTS in Multi-agent Pathfinding,
demonstrating its superiority over heuristic search algorithms like A*. Additionally, Yang (2023)
integrated MCTS with heuristic, unsupervised, and supervised learning methods to efficiently solve
the Train Timetabling Problem (TTP). Furthermore, Li et al. (2023) introduced a general method for
solving various types of SAT problems using a unified framework incorporating MCTS. Vagadia et al.
(2024) developed PhyPlan, a physics-informed planning framework that combines physics-informed
neural networks with modified MCTS to enable robots to perform dynamic physical tasks effectively.
In conclusion, MCTS has proven to be a versatile and effective mathematical solution for solving
various complex problems in different domains, including robotics, game solving, and optimization.
Researchers continue to explore and enhance the capabilities of MCTS by integrating it with other
algorithms and frameworks to tackle increasingly challenging tasks.
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Recent research has made notable strides in enhancing mathematical reasoning in large language
models (LLMs). Du et al. (2023) introduced a method where multiple LLMs discuss and refine
answers collectively, significantly boosting reasoning and factual accuracy. Luo et al. (2023) devel-
oped WizardMath, which leverages Reinforcement Learning from Evol-Instruct Feedback to surpass
existing LLMs in mathematical benchmarks. Meanwhile, Lu et al. (2023) created MathVista, a
visual, mathematical benchmark, with GPT-4V achieving a 49.9% accuracy, highlighting gaps that
persist relative to human performance. Yu et al. (2023) introduced MetaMath, a fine-tuned model
that excels in mathematical challenges, and Yuan et al. (2023) demonstrated that pre-training loss
and Rejection sampling Fine-Tuning can optimize LLM performance, particularly in less advanced
models. These studies suggest significant progress yet underline the necessity for ongoing research in
LLM mathematical reasoning.

Recent advancements in large language models (LLMs) have significantly improved their mathe-
matical reasoning abilities. Yet, they still face complex problems that require multiple reasoning
steps, leading to logical or numerical errors. To address this limitation, Chen et al. (2024) proposed
incorporating Monte Carlo Tree Search (MCTS) to enhance the mathematical reasoning capabilities
of fine-tuned LLMs without additional fine-tuning steps . Xu (2023) utilized MCTS and a lightweight
energy function, the models can rank decision steps and enable immediate reaction and precise
reasoning, leading to improved performance on mathematical reasoning benchmarks. However, it
still lacks a framework that combines the self-refine capabilities and self-reward evaluation method
of LLMs to refine the model’s response iteratively with the Monte Carlo Tree Search Algorithm.

6 Limitations

Although the MCTSr algorithm has demonstrated certain advantages in mathematical tasks, our
research is still in its preliminary stages. As a general decision-making framework, the potential
applications of MCTSr in various scenarios remain to be explored further, such as in black-box
optimization problems and self-driven alignment for large language models. Additionally, the
components of MCTSr are highly scalable, necessitating ongoing development to identify and
compare a broader range of component algorithms, thereby enhancing the practical potential and
effectiveness of the MCTSr algorithm.

7 Conclusion

This paper demonstrates the effectiveness of the MCT Self-Refine (MCTSr) algorithm in enhancing
the capability of Large Language Models (LLMs) to solve complex mathematical problems. By
integrating Monte Carlo Tree Search (MCTS) with LLMs, MCTSr addresses critical challenges
in accuracy and reliability, particularly within mathematical reasoning tasks. Experimental results
confirm significant improvements in problem-solving success rates across multiple datasets, including
notable performance in Olympic-level mathematical challenges.

Moreover, the research advances the application of LLMs in sophisticated reasoning tasks and
lays the groundwork for future integration of AI technologies to enhance decision-making and
reasoning accuracy. Despite MCMCTSr’semonstrated potential in mathematical problem-solving, its
applicability in broader contexts, such as black-box optimization and self-driven alignment, remains
to be explored. Future work will optimize algorithmic components and test their performance across
various problems and settings to achieve broader practicality and effectiveness.
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A Prompts in Experiment

A.1 Self-Refine

Get Feedback:

USER: Since we have a weak Answer, could you provide me with a relection or feedback to
correct this answer better? Analyze this Answer Strictly and Critic, point out every flaw for
ervery possible imperfect to minus every possible score!
Let’s think step by step.

Get Refined Answer:

USER: Please refine the your answer according to your Reflection or Feedback. The response
should begin with [reasoning process]...[Verification]... and end with end with "[Final An-
swer] The answer is [answer formula]"
Let’s think step by step.

A.2 Self-Reward

USER: Question: question
Answer: ans
Analyze this Answer Strictly and Critic, and point out every flaw for every possible imperfect
to minus every possible score! You need to be very harsh and mean in calculating grades, and
never give full marks to ensure that the marks are authoritative.
Output a score between [-100,+100], ig. from -100 to +100.
Response format:
[Analyst]...[Score]...

A.3 Dummy Answers

USER: ["I Don’t Know","I can’t understand this question.","I can’t help with this question.","I
don’t know how to solve this question.","I don’t know the answer to this question.","I don’t
know the answer to this question, sorry."]
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