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I recently got to 50% 1 accuracy on the public test set for ARC-AGI by having GPT-4o
generate a huge number of Python implementations of the transformation rule (around
8,000 per problem) and then selecting among these implementations based on
correctness of the Python programs on the examples (if this is confusing, go to the next
section) 2. I use a variety of additional approaches and tweaks which overall substantially
improve the performance of my method relative to just sampling 8,000 programs.

[This post is on a pretty di0erent topic than the usual posts on our substack. So regular readers
should be warned!]

The additional approaches and tweaks are:

I use few-shot prompts which perform meticulous step-by-step reasoning.

I have GPT-4o try to revise some of the implementations aNer seeing what they
actually output on the provided examples.

I do some feature engineering, providing the model with considerably better grid
representations than the naive approach of just providing images. (See below for
details on what a “grid” in ARC-AGI is.)

I used specialized few-shot prompts for the two main buckets of ARC-AGI
problems (cases where the grid size changes vs doesn’t).

The prior state of the art on this dataset was 34% accuracy, so this is a signiUcant
improvement. 3

On a held-out subset of the train set, where humans get 85% accuracy, my solution gets
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72% accuracy. 4 (The train set is signiUcantly easier than the test set as noted here.)

Additional increases of runtime compute would further improve performance (and there
are clear scaling laws), but this is leN as an exercise to the reader.

In this post:

I describe my method;

I analyze what limits its performance and make predictions about what is needed to
reach human performance;

I comment on what it means for claims that François Chollet makes about LLMs.
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Given that current LLMs can perform decently well on ARC-AGI, do claims like
"LLMs like Gemini or ChatGPT [don't work] because they're basically frozen at
inference time. They're not actually learning anything." make sense? (This quote is
from here.)

Thanks to Fabien Roger and Buck Shlegeris for a bit of help with this project and with
writing this post.

ARC-AGI is a dataset built to evaluate the general reasoning abilities of AIs. It consists
of visual problems like the below, where there are input-output examples which are grids
of colored cells. The task is to guess the transformation from input to output and then
Ull out the missing grid. Here is an example from the tutorial:

This one is easy, and it’s easy to get GPT-4o to solve it. But the tasks from the public test
set are much harder; they’re oNen non-trivial for (typical) humans. There is a reported
MTurk human baseline for the train distribution of 85%, but no human baseline for the
public test set which is known to be signiUcantly more diecult.

Here are representative problems from the test set 5, and whether my GPT-4o-based
solution gets them correct or not.

Problem 1:

What is ARC-AGI?

https://arcprize.org/guide
https://arcprize.org/arc
https://arcprize.org/guide#grand-prize-goal
https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2F4538fb1f-1a95-4eef-be6a-556085d65c1b_828x376.png


Problem 2:

Problem 3:
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The main idea behind my solution is very simple: get GPT-4o to generate around 8,000
python programs which attempt to implement the transformation, select a program
which is right on all the examples (usually there are 3 examples), and then submit the
output this function produces when applied to the additional test input(s). I show GPT-
4o the problem as images and in various ascii representations.

My approach is similar in spirit to the approach applied in AlphaCode in which a model
generates millions of completions attempting to solve a programming problem and then
aggregates over them to determine what to submit.

Actually getting to 50% with this main idea took me about 6 days of work. This work
includes constructing few-shot prompts, building better text representations of these
grids, iterating against the train set, and implementing various other tweaks to improve
performance.

I started on this project a few days before Dwarkesh Patel recorded the recent podcast
with Chollet. This was inspired by Dwarkesh talking to my coworker Buck about ARC-
AGI, and then Buck being like “come on, surely you can do better than current SOTA
using LLMs”. Then, I tested GPT-4o a bit and it seemed to get what was going on. I’ve
recently been doing some research that involved getting Claude 3 Opus to do reasoning
right at the edge of its capabilities, and thought I might have an edge based on my
experience from that project.

At a high level, the method I use is:

My method
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Provide the ARC-AGI problem to GPT-4o, with both an image representation and
with various text representations for each grid in the problem. The text
representations include showing which cells are occupied by diherent connected
components of colors and showing dihs between the input and output (in cases
where the grid shapes are the same).

Instruct GPT-4o to reason about what the transformation is, reason how to
implement the transformation as code, and then Unally actually implement the
transformation in code.

Use a few-shot prompt with several carefully handwritten examples of step-by-step
reasoning 6 to actually get GPT-4o to do this reasoning somewhat ehectively. The
resulting prompt is usually around 30k tokens long including images.

We actually have a pair of few-shot prompts: one prompt for when the grid size
changes (in any of the examples) and one for when it doesn’t.

We also ensemble over multiple pairs of few-shot prompts. This doesn’t help
much, but I already had the samples in the cache.

Sample vast, vast numbers of completions (~5,000 per problem) from GPT-4o.

Take the most promising 12 completions for each problem, and then try to Ux each
by showing GPT-4o what this program actually outputs on the examples, and then
asking GPT-4o to revise the code to make it correct. We sample ~3,000 completions
that attempt to Ux per problem in total across these 12 starting implementations.

We use a few-shot prompt for revisions with step-by-step reasoning.

We also have a text representation which shows the dih between the actual
output and the expected output.

Then, we select 3 submissions 7 to make based on a majority vote over programs
which get the examples correct. (In the case where we don’t have 3 distinct
submissions from programs which get the examples right, we apply some heuristics
to pick a submission, but this doesn’t matter much.).

In addition to iterating on the training set, I also did a small amount of iteration on a 100
problem subset of the public test set. All the results I presented here were computed on
a diherent subset of the public test set that does not overlap.  The train and test set are
not IID, and the test set is both much harder and somewhat qualitatively diherent (I
think), so using a subset of the test set for iteration was useful for quickly getting a



better sense of how things change with dieculty. It's unfortunate that these sets aren’t
IID: it makes iteration harder and more confusing. 8

More of the details of my approach and a bunch of tricks I use to improve performance,
can be found at the bottom of this post. You can Und the full solution in this GitHub
repo: https://github.com/rgreenblatt/arc_draw_more_samples_pub.

We can analyze how more samples improves performance on test. For ease of
interpretation (and implementation), I show returns to samples on the primary and most
performant prompting variant I use (in the section below, it has the name “V2”) 9. I also
don’t incorporate revision (as this would require a separate run for each number of
samples).

What are the returns to more sampling?
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There appears to be a relatively clean scaling law 10. Of course, a linear Ut from log(k) to
accuracy can’t go on forever as it would imply you eventually go above 100% accuracy! 11

The Ut is in terms of log base 2. So, it indicates an additional 3% correct per doubling of
k.

While the number of samples I use is large, using far more samples is certainly possible.
(For reference, AlphaCode uses up to a million samples per problem).

I Und that improving prompting and adding a revision step is important to improve the
accuracy. Huge numbers of samples, better prompting, and a revision step are all
essential for the performance I achieve.

What are the returns to better prompting and code fixing?
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Here is a breakdown of the performance by version of the prompt:

V0 - 1024 samples/pb: 25% (test set performance). This version doesn’t split into two
buckets and doesn’t use the ascii representations described above. (It does show a
simple ascii grid like 8|0|3 where 8, 0, 3 are the colors of that row.)

V1 - 1024 samples/pb: 27%. This variant splits into two buckets and uses the
spreadsheet style ascii representations (when in the equal image size bucket). It uses
diherent few-shot prompt examples (though the examples overlap with V0).

V1.1 - 1024 samples/pb: 28%: This is just a variant with somewhat arbitrarily
diherent prompts for diversity and because I thought these prompts might be
better. (They aren’t really better.)

V2 - 1024 samples/pb: 30%. This variant includes the ascii dih between the input
and output and again includes diherent examples.

V2 - 2048 samples/pb: 34%

V0 (1024) + V1 (1024) + V1.1 (1024) + V2 (2048): 37%.

This performance is the same as what I would expect from 4096 samples from
V2, so the diversity doesn’t seem to help more than the downside of V0/V1/V1.1
being worse than V2.

To reach 37% with just V0, I would need around 43,000 samples! (Based on the
Ut I show below.) So, using better prompting and representations makes a big
diherence.

Final version (Revision step (3040 / pb with most problems selected) + V0 (1024) + V1
(1024) + V1.1 (1024) + V2 (2048)): 50%

To reach 50% with just samples from V2, I would need 100,000 samples! So the
revision is doing a huge amount of work. (With just V0, I would need 1,500,000
samples.)

I was surprised by how much revision helps.

Further rounds of revision might also help, but I didn’t get around to running
this. (I had this implemented in an earlier version, but I removed it.)

Revision seems to Ux around 20% of the remaining incorrect solutions on both
test and train. As in, if we’re getting 37% correct, then we get an additional 0.63
* 0.2 = 0.13 correct for a total of 0.5. Accordingly, revision yields a notably



smaller absolute improvement on train (an absolute improvement of only 6% vs
13%).

I don’t have numbers for cutting reasoning while using comparable amounts of samples.

I use the exact same settings for the train distribution numbers I report.

We can also compare the scaling of diherent prompts:

Above, I noted that revision seems to Ux around 20% of the remaining incorrect.
Supposing that this scales indeUnitely (a dubious assumption), we can see how long it
takes to reach various performance thresholds with my current method and various
ablations.
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Getting to “just” 70% performance with my current method would take 2^21 samples
(around 2 million)! I think 70% is probably similar to the performance of typical people
on MTurk on the test set, though no number is known.

GPT-4o is limited by failures other than reasoning, such as:

1. GPT-4o’s vision is terrible on grids. When asked to describe what is in a somewhat
large grid, it oNen fails to “see” the input correctly, and states wrong facts about
what colors are in some location or what shapes are present.

a. In particular, it totally fails to extract the colors of cells from an image for
images >12x12 and is quite bad at 8x8.

b. If humans had visual abilities as poor as GPT-4o, it would oNen take them quite

Qualitative analysis
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a bit of ehort to solve even simple ARC-AGI problems. (If you want a
frustrating time, try solving some ARC-AGI problems without using vision
other than reading: that is, try to do them without ever drawing out the grids in
2d, forcing yourself to instead just interact with a textual representation of the
data. For hard mode, you could try doing this blindfolded, with a friend
allowing you to dictate Python lines of code to run on the image. I think this
would be quite hard.)

2. GPT-4o isn’t that good at coding (especially not for these sort of geometric
manipulation problems), and makes simple mistakes like oh-by-one errors
extremely oNen.

a. We don’t do multi-round debugging because it’s probably cheaper and more
ehective to just get more samples in the current regime.

3. GPT-4o is worse at using long contexts than other models:

a. I think the long context for GPT-4o is quite bad and starts taking a big hit aNer
about ~32k to 40k tokens (based on my qualitative impression), which limited
my ability to use longer prompts with more examples and more detailed
representations.

b. It doesn't seem to respect my few-shot prompt and oNen does somewhat worse
stuh than what it should do based on the few-shot examples. For instance, it
systematically responds with much shorter completions than it is supposed to
(even if I give it very speciUc instructions to do otherwise!).

4. Not having ;exible pre=x caching substantially limits approaches. With the n
option in the OpenAI api, but without more yexible preUx caching, eecient
approaches are limited to just drawing lots of samples rather than eeciently having
a large number of reasoning traces which diverge, proceed in parallel, and receive
outputs from code (while sharing a few-shot prompt). This massively increases costs
for approaches which focus more on doing multi rounds of revision and iteration on
all or most implementations rather than just doing a large number of 1-step
revisions on one implementation (or a small number of implementations).

Removing these non-reasoning weaknesses would improve the performance of my
solution by a signiUcant amount. Vision is an especially large weakness.

To be clear, GPT-4o is also limited by being very dumb. A smart human with only access
to the text representation could substantially outperform GPT-4o by spending a bunch



of time on each problem.

I used over 1000x more runtime compute per problem than prior work on this
benchmark. Maybe prior work on this benchmark scales well with compute and
would have gotten higher accuracy with higher resources.

There is a broad distribution of problem dieculty even in the test set. For example,
some of the problems have a diecult-to-guess component which only has a few
sensible options (e.g. pick which of two possible colors to use in some location), and
the evaluation metric is top-3 accuracy. Therefore, the gap between our solution’s
performance and human performance in the test set may be larger than you would
expect when just looking at the numbers.

In practice, changing to top-2 accuracy only ahects performance by a tiny
amount. (it goes to 48% on test and 70% on train)

To decrease cost and to allow for having a subset to iterate on (especially for the
train set!), I only ran my solution on a randomly selected set of 100 train and 100 test
problems. The resulting standard error of the mean is reasonably tight (5%), but this
means my results might be slightly overoptimistic.

This submission is ineligible for the ARC-AGI prize and main leaderboard as it
uses a closed source model and too much runtime compute.

I haven’t yet submitted to the private leaderboard. (I need to port it into a kaggle
notebook and make sure it doesn’t use too much RAM).

70% probability: A team of 3 top research ML engineers with Une-tuning access to
GPT-4o (including SFT and RL), $10 million in compute, and 1 year of time could
use GPT-4o to surpass typical naive MTurk performance at ARC-AGI on the test
set while using less than $100 per problem at runtime (as denominated by GPT-4o
API costs).

Note that typical naive MTurk performance is probably not 85% on the test set
(the prior baseline is on the easier train set) and there is no known human
baseline. (Perhaps performance is around 70%?)

35% probability: Under the above conditions, 85% on the test set would be achieved.

Caveats

Predictions



It’s unclear which humans perform at >=85% on the test set, though this is probably
not that hard for smart humans.

60% probability: If a next generation frontier LLM (e.g. GPT-5) was much better at
basic visual understanding (e.g. above 85% accuracy on Vibe-Eval hard), using my
exact method (with minor adaptation tweaks as needed) on that LLM would surpass
typical naive MTurk performance.

30% probability: Under the above conditions, 85% on the test set would be achieved.

80% probability: next generation multi-model models (e.g. GPT-5) will be able to
substantially advance performance on ARC-AGI.

Chollet says:

If you were right [that LLMs can do in-context learning], LLMs would do really well
on ARC puzzles because ARC puzzles are not complex. Each one of them requires
very little knowledge. Each one of them is very low on complexity. You don't need to
think very hard about it. They're actually extremely obvious for human [sic]

Even children can do them but LLMs cannot. Even LLMs that have 100,000x more
knowledge than you do still cannot. The only thing that makes ARC special is that it
was designed with this intent to resist memorization. This is the only thing. This is
the huge blocker for LLM performance.

If you look at LLMs closely, it's pretty obvious that they're not really synthesizing
new programs on the yy to solve the task that they're faced with.

Contra Chollet, I think that current LLMs are well described as doing at least some
useful learning when doing in-context learning.

In particular, given my results you have to reject one of the following claims:

1. Getting modest performance on ARC-AGI (e.g. 50%+ on test) requires at least a little
runtime "learning" on each problem.

2. Program selection on only a moderate (e.g. 6,000) number of programs (like the way
I do it) doesn't count as "learning" in the typical way people think of learning.

What it means about current LLMs
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3. Current LLMs never "learn" at runtime (e.g. the in-context learning they can do
isn't real learning).

Claim 1 seems likely true to me for a reasonable notion of “learning”. I think François
Chollet agrees here. Most of my doubts about this claim are concerns that you can
basically brute force ARC-AGI without interestingly doing learning (e.g. brute-force
search over some sort of DSL or training on a huge array of very similar problems).
These concerns apply much less to the kind of approach I used.

Claim 2 seems true to me: the distribution of programs you are searching over has to be
pretty close to the right program for Best-of-6k to work at all: if you did best-of-6k for
random python programs, this would not work! Perhaps François Chollet disagrees here,
but I think this view would be unreasonable.

Therefore, I think Claim 3 is false: I think LLMs actually do some relevant “learning”
when doing in-context learning. Overall performance is very weak (otherwise I wouldn’t
have needed to draw thousands of samples in my solution), but it’s some learning
nevertheless. (Though there are various obstacles to GPT-4o performing well other than
reasoning and learning ability such as vision and coding limitations.)

(One caveat is that this could be false if a substantial fraction of GPT-4o’s performance
comes from dataset contamination. This seems very unlikely to me.)

It’s worth emphasizing that GPT-4o’s learning within a single context seems much less
competent than typical human learning. But it is learning nonetheless. My view isn’t that
GPT-4o is smart relative to humans in the typical way we mean smart, but I do think it
has something which is well described as intelligence.

Progress has not stalled. I think ARC-AGI will be one benchmark among many that just
gets solved by scale, and that as LLMs are scaled up, we should expect them to be able to
solve tasks of increasing complexity when used with the appropriate tools, resources and
prompting/scaholding. (In this case, performance is due to scale and 6 days of iteration.)

I think it is plausible that scaling LLMs 12 by another 2-10 OOMs in ehective training
compute, and giving them tools, resources and scaholding to solve real-world tasks can
result in "AGI" 13, understood as AI capable of massively accelerating R&D. Such a

What ARC-AGI tells us about AGI



technology would likely be the most transformative technology in human history, and I
prefer to refer to this as "Transformative AI” (TAI) due to the potential ambiguity of
"AGI".

TAI poses huge risks. Making mistaken predictions about where LLMs are heading
could result in a dramatic underestimate of the dangers they could pose. If, like Mike
Knoop (co-host of the ARC-AGI prize), you oppose bills like SB-1047 because you think
LLMs won’t scale 14, then it really matters that you are right about LLMs not scaling.
And every time you get evidence that indicates that scaling might be dangerously
powerful (and I hope this post provided some), you should update appropriately in favor
of more caution.

ARC-AGI probably isn't a good benchmark for evaluating progress towards TAI:
substantial "elicitation" ehort could massively improve performance on ARC-AGI in a
way that might not transfer to more important and realistic tasks. I am more excited
about benchmarks that directly test the ability of AIs to take the role of research
scientists and engineers, for example those that METR is developing. (I think developing
these evaluations and the science of conducting these evaluations is a highly leveraged
way of reducing the risk that powerful AGI takes humanity by surprise; if you’re
interested in contributing to them, you can see open roles at METR here. Note that I
have various COIs with METR.) I still think that work like ARC-AGI can be good on the
margin for getting a better understanding of current AI capabilities.

(I'm ambivalent about advancing AI progress overall, especially in a broadly proliferated
fashion. If I thought that my work on ARC-AGI would likely substantially advance AI
progress, I would not have published this blog post.)

More minimally, I think that ARC-AGI would be a better evaluation of progress towards
TAI if it used purely text based problems or at least had a text based subset: good vision
isn’t necessary for TAI and improved vision has outsized ehects on ARC-AGI relative to
TAI progress.

I also think that the ARC-AGI prize is made worse by not allowing SOTA (closed source)
LLMs in submission and by overly restricting runtime computation 15. (There is an open
leaderboard which has no such constraints.) I expect that SOTA LLMs will be pushing
the frontier of progress in ARC-AGI based on these results and general views about
what will happen with SOTA LLMs in the next few years. Higher limits on runtime
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compute seem important for advance warning: if an approach currently costs 10x human
labor costs but can do a task, then it will probably cost way less in a few years (or less
time) as further optimizations accrue. For instance, substantially optimizing the runtime
compute used by my approach seems doable.

Overall, I appreciate the approach of ARC-AGI and I appreciate that Chollet and Knoop
have made strong and relatively speciUc claims. (Some of which now seem to be
contradicted!) Nonetheless, I think there are substantially better ways to benchmark
progress toward transformative AI.

I use a bunch of tricks to improve performance:

I split problems into two buckets: problems where the grid is the same size in the
input and the output (in the examples) and problems where the size dihers on any
example input. I use a diherent prompt for these two cases. I use diherent examples
and I also use a more extensive ascii representation in the case where the grids are
the same size, as this representation is more useful in this case. I also use diherent
prompts when having GPT-4o Ux attempted implementations.

I use various ascii representations (in the case where grids are the same size) to
make it easier for GPT-4o, which is very bad at this type of vision, to analyze the
grid. Few-shot examples use these representations when reasoning. We show:

The grid as a 2d array where each location has both the color and that location
is spreadsheet/chess style notation (e.g. A7, B3, etc.)

The list of all locations (in spreadsheet style notation) at which a given color
occurs. We split this up into connected components to make shapes easier to
understand.

A normalized view of connect components (shapes) which shows the
spreadsheet notation with shapes translated to have minimum row and column
at 0. This makes it easier to compare shapes without getting confused by
ohsets.

A “dih” between the input and output represented as pairs of distinct colors
and the locations at which the input has the Urst color and the output has the
second color (e.g., black changes to green).[^dihonly] This is only used in a

Appendix: A bunch of tricks used in my solutions



subset of examples (see below about ensembling over few-shot prompts).

When revising implementations, I also show an ascii dih between the expected
and actual output for each of the examples. This is shown regardless of whether
the input/output grid for the examples are the same size. (Though it can only be
shown if the expected and actual output have the same shape.)

I do a bit of local search to optimize prompts (on diherent subsets of the data from
the subsets where I report performance!). Mostly, this looks like deciding which
few-shot examples to include and which to put at the start/end of the prompt (which
the model probably pays more attention to).

I use a few-shot prompt for the revision operation rather than just asking the model
to revise. In the few shot prompt, I include some cases where revision is both
reasonably doable and the model failed to successfully revise (on a prior version of
the prompt on the train set). 

I use a somewhat non-trivial hamming distance approach for picking which
implementations to revise though I don’t think details here matter much (based on
my testing). I end up selecting 12 solutions which are ranked in closeness to the
output and then using 3040 samples split over these solutions. I allocate the samples
by reducing the samples by 25% for each successive item (the Urst item gets 384
samples, the second gets 288, the third 224 (I round to the closest 32), and so on). 

I use the geometric mean of the hamming distance ranks to each of the outputs
in the examples. (That is, I get the distances for each implementation, I rank
them based on these distances, and then I take the geometric mean of these
ranks across examples.) I also encourage slightly more diversity by penalizing
for being too close to the solutions I’ve already selected. I only revise
implementations that produce valid grids. I also skip implementations that
produce a grid with a size that doesn’t match the expected output for problems
where the size shouldn’t change (based on the examples).

I somewhat arbitrary upsample completions from better prompts, in particular
the V2 prompt described above is upsampled. I just guessed at a constant ohset
to add for V2 to to remove for V0 based on some eyeballing of the typical
geometric mean and what I thought might make sense. I didn’t optimize these
values.

I only do revision on problems with fewer than 32 solutions that are correct on
the examples with the idea being that we probably got the other solutions



correct and thus don’t need to run this. I Ulter out solutions which are correct
on the examples (as it's unclear what revision should do in this case).

I ensemble over several few-shot prompts. I think this somewhat improves
performance over more samples with a Uxed few-shot prompt (the diversity
improvement is larger on the test distribution than the train distribution I think)
and I already had a bunch of these samples from prior runs.

To pick what to submit, I do a majority vote and pick the top-3. First, I do a
majority vote over the implementations which are correct on the training set. If this
doesn’t produce three outputs (because there are less than 3 distinct outputs from
implementations which are correct on the training set), I do a majority vote over
implementations where I weight implementations based on how close they are to
the expected output on the examples. In particular, I use the same geometric mean
of hamming distance ranks metric discussed above where the weight for the
majority vote is the reciprocal of this geometric mean.

I don’t think the details of this matter much (and it isn’t optimized), I just
thought something like this would be a good idea.

I also reject outputs which are equal to the test input. There are no cases in
ARC-AGI where the test output is equal to the test input. This is more
important than you might have thought because implementations which make
no changes sometimes do well according to the hamming distance metric but
are surely wrong. (If there are multiple test inputs, we reject if any are the
same.)

I use the n option from the GPT-4 API to make more samples cheaper.

Some tricks I don’t use that might improve performance:

I currently spend the same number of samples on each problem. You could
terminate early on problems which are consistently solved. I think this might
reduce cost by perhaps 25-35%.

In the OpenAI API, I use n < 128 (typically 32 or 16) because n=128 typically errors
from what I’ve seen. Currently it seems like about half of my cost is input tokens, so
going to n=128 would roughly halve the cost.

It would probably help to divide the problems into substantially more categories
and then build specialized prompts and tools for each category. This somewhat



defeats the point of ARC-AGI though and I’m not sure what these categories would
be.

Doing a second or third revision round could help substantially. (Relative to
spending these samples elsewhere.)

Further extending the debugging/revision process could help substantially.

Fine-tuning of GPT-4o to better understand the representations I use (and be able
to see) would surely help a bunch (though it would be expensive).

Appendix: results for the train set
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Around 2^15 or 32,000 samples would be required to reach MTurk performance on the
train set.

Appendix: Returns to revision samples
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1 The number being exactly 50% is a coincidence. An earlier version of this method got 51%, but
then I Uxed a bug and reran and ended up at 50% by chance.

2 I haven’t yet submitted to the public leaderboard, but I’ll do this at some point. (I haven’t done
this yet because this requires writing a kaggle notebook and might require me to reduce ram
usage somewhat. (My ram usage is highly unoptimized.))

3 Prior results didn't have access to SOTA LLMs nor did they use nearly as much compute as I
did. Also, prior results are evaluated on a private test set, though this shouldn’t matter much
since it’s supposed to be basically IID with the public test set.

4 I hold out 100 problems from the train set which I avoid doing any iteration or prompt
optimization on. I then test on this held out set and report these numbers.

https://arcprize.org/leaderboard
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5 These problems were picked from the public evaluation set, and I chose the third random
sample of three problems, as the Urst sample didn’t seem representative and the second
sample didn’t have the AI getting one right for a prior version of my method (it now gets one
right on this second sample). These are problems named '642d658d.json', '0934a4d8.json',
'fafd9572.json' on ARC-AGI’s GitHub repository. You can Und more here by selecting “Public
evaluation set” as test set instead of the default “tutorial”. You can submit up to 3 answers per
problem (accuracy is top-3 accuracy); my solution got the Urst right on its Urst try.
Interestingly, this third problem was actually done correctly by my method (on the Urst try) on
a prior run of the approach, but aNer I Uxed a bug and reran the revision step, it now is
incorrect.

6 In practice, GPT-4o seems to not really bother doing a good job of following my reasoning
examples, so being this meticulous in the reasoning is probably not that useful (though it
probably helps some). I tried it because I’ve previously found that extremely detailed few-shot
prompts have been really helpful for eliciting high-quality reasoning from LMs.

7 ARC-AGI allows for 3 submissions per problem (based on the description on the github) and I
assume prior SOTA and the human baseline is reported with 3 submissions per problem. It
seems like the contest maybe now only allows for 2 submissions. When lowering to 2
submissions, I get 70% (rather than 72%) on the train set and 48% (rather than 50%) on the test
set.

8 Early in this project I didn’t realize these sets dihered so much and thought I had made much
more progress! This is clearly pointed out in the current technical guide and was noted
somewhere on the old website, so this is mostly on me.

9 It’s non-obvious how to budget samples when using multiple few-shot prompts for diversity.
In practice, I Und that more samples from V2 basically dominates diversity from the prompt
ensemble I use.

10 For the Ut, I cut oh sample counts lower than 8 as I found that this sometimes makes the Ut
considerably worse in the regime we care about. There are good reasons to expect diherent
scaling for small numbers due to using top-3 accuracy.

11 We could resolve this by changing the y axis to log(1-accuracy) which should have the
intended asymptotic properties. I’ve looked at this and this Ut seems slightly worse in this
regime. Probably both Uts start to fail aNer less than 10 more doublings.

12 By LLMs, I really mean AIs which heavily utilize semi-supervised pretraining and are
basically a continuation of the current paradigm of SOTA LLMs.

https://github.com/fchollet/ARC-AGI
https://arc-editor.lab42.global/playground
https://github.com/fchollet/ARC-AGI


13 I don't like the term AGI. I prefer using the term transformative AI and ideally deUning this
term to mean something speciUc like "AI capable of massively accelerating R&D".

14 I don’t think that this is actually a good argument against SB 1047, since this bill only requires
that companies that spend at least $100M on a training run measure dangerous capabilities
(which is very cheap compared to the training run itself), and apply appropriate safety
measures if the evaluation shows that the resulting AI can cause a catastrophe. I discuss my
thoughts on SB-1047 in more detail in this blog post.

15 That said, I understand why heavily restricting runtime compute might be important for
kaggle.
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> Contra Chollet, I think that current LLMs are well described as doing at least some useful

learning when doing in-context learning.

I agree that Chollet appears to imply that in-context learning doesn't count as learning

when he states:

> "Most of the time when you're using an LLM, it's just doing static inference. The model

is frozen. You're just prompting it and getting an answer. The model is not actually learning

anything on the fly. Its state is not adapting to the task at hand."

(This seems misguided as we have evidence of models tracking and updating state in

activation space)

However later on in the Dwarkesh interview, he says:

> "Discrete program search is very deep recombination with a very small set of primitive
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programs. The LLM approach is the same but on the complete opposite end of that

spectrum. You scale up the memorization by a massive factor and you're doing very

shallow search. They are the same thing, just different ends of the spectrum."

My steelman of Chollet's position is that he thinks the _depth_ of search you can perform

via ICL in current LLMs is too shallow, which means they rely much more on learned

mechanisms that require comparatively less runtime search/computation but inherently

limit generalization.

I think the directional claim "you can easily overestimate LLMs' generalization abilities by

observing their performance on common tasks" is correct - LLMs are able to learn very

many shallow heuristics and memorize much more information than humans, which allows

them to get away with doing less in-context learning. However, it is also true that this may

not limit their ability to automate many tasks, especially with the correct scaffolding, or

stop them from being dangerous in various ways.

LIKE (4) REPLY SHARE

1 reply

osmarks Jun 17 Liked by Buck Shlegeris

Is it possible that the issues with vision are because the size of the cells in the input is

different from GPT-4o's patch size?
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