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Abstract

We present Ax-Prover, a multi-agent system for automated theorem proving in Lean that can solve problems
across diverse scientific domains and operate either autonomously or collaboratively with human experts. To achieve
this, Ax-Prover approaches scientific problem solving through formal proof generation, a process that demands both
creative reasoning and strict syntactic rigor. Ax-Prover meets this challenge by equipping Large Language Models
(LLMs), which provide knowledge and reasoning, with Lean tools via the Model Context Protocol (MCP), which en-
sure formal correctness. To evaluate its performance as an autonomous prover, we benchmark our approach against
frontier LLMs and specialized prover models on two public math benchmarks and on two Lean benchmarks we
introduce in the fields of abstract algebra and quantum theory. On public datasets, Ax-Prover is competitive with
state-of-the-art provers, while it largely outperform them on the new benchmarks . This shows that, unlike spe-
cialized systems that struggle to generalize, our tool-based agentic theorem prover approach offers a generalizable
methodology for formal verification across diverse scientific domains. Furthermore, we demonstrate Ax-Prover’s
assistant capabilities in a practical use case, showing how it enabled an expert mathematician to formalize the proof
of a complex cryptography theorem.

1 Introduction
Developing Large Language Models (LLMs) that can reason reliably across scientific domains remains a central
challenge for AI, both in academia and in industry. LLM-based formal reasoning systems have mainly been developed
for mathematics, where they have achieved outstanding results [16, 13]. Recently, considerable effort has been put
into training reasoning LLMs for formal theorem proving using Lean [19], an open-source programming language
and interactive proof assistant. Together with its community-driven Mathlib library [33], Lean provides a rigorous
setting where AI systems must engage with symbolic reasoning and structured formalization, building on an evolving
body of mathematical knowledge. LLM provers such as the DeepSeek-Prover series [60, 61, 49], Kimina-Prover-72B
[58], Goedel-Prover [35, 36], and Seed-Prover [13] have shown that specialized prover models can be distilled from
frontier LLMs and trained for theorem proving in Lean, reaching state-of-the-art performance on math benchmarks
like miniF2F [65] and PutnamBench [55]. Despite these results, these models face some key limitations. First,
since they were mainly trained and tested in the the domain of mathematics, their ability to generalize beyond this
domain remains unclear. Relatedly, they are usually trained on fixed versions of the fast-evolving Mathlib library,
making them brittle to changes introduced in new Mathlib versions – such as new or renamed definitions – unless
continuously re-trained which adds significant cost.1 Second, while training improves their ability to produce Lean
proofs, it narrows their capabilities relative to general LLMs as they become unable to use external tools and engage
in human–AI collaboration. Finally, it is hard to run them as they require high-spec machines and expertise to be

1For example, Deepseek-Prover-V2-671B was released on April 30, 2025 and, in our experiments, we observed that, for example, it uses the
lemma sqrt eq iff sq eq, which was deprecated in favor of sqrt eq iff eq sq on March 3, 2025.
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successfully deployed and used. Together, these issues suggest that scaling increasingly large specialized provers may
yield diminishing returns in both flexibility and usability.

In contrast, general-purpose LLMs like Claude [5] and GPT [45] encode substantial knowledge across diverse do-
mains (e.g., mathematics, physics, and computer science), while also exhibiting strong natural language understanding,
problem solving skills, and interaction capabilities. Moreover, they are easily accessible through APIs, making them
convenient to deploy and integrate into any workflow. Yet, they are not explicitly trained to formalize statements or
construct proofs in Lean, nor can they natively interact with the Lean environment. This creates a sharp division:
specialized provers are tightly integrated with Lean but narrow in scope and hard to use, whereas general-purpose
LLMs are broad in scope and easily accessible but lack the ability to interface with the formal reasoning infrastructure
required for theorem proving.

To address this gap, we introduce Ax-Prover,2 a new agentic workflow for theorem proving in Lean that leverages
the Model Context Protocol (MCP) [41] to equip general-purpose LLMs with Lean tools from the lean-lsp-mcp
repository [22]. Ax-Prover combines the reasoning capabilities of LLMs with the formal verification power of Lean.
The LLM analyzes unproven theorems, proposes proof sketches, and generates step-by-step Lean code, while the Lean
tools allow the LLM to inspect goals, search for relevant results, locate errors, and verify proofs – capabilities essential
for rigorous formal theorem proving.

Ax-Prover overcomes the main limitations of state-of-the-art provers. First, using frontier LLMs prevents domain
overspecialization while the MCP interface lets the system work with any recent version of Mathlib without needing
to be retrained. Second, it preserves tool-use and conversational abilities, enabling interactive collaboration with
humans. Third, by leveraging existing frontier models, it sidesteps the need to host or deploy specialized systems.

We evaluated Ax-Prover on two public datasets that include mathematics competition problems (NuminaMath-
LEAN [44] and PutnamBench [55]) and introduce two new datasets to enable evaluation in new domains. The first
one, AbstractAlgebra, focuses on algebraic structures such as groups, rings, and fields, testing the provers’ abilities
to reason in a more abstract, research-oriented setting rather than the competition-driven style of existing datasets. The
second one is QuantumTheorems, which represents an initial step toward automated theorem proving in a scientific
domain beyond pure mathematics, evaluating the models’ formal reasoning in quantum mechanics. Our results show
that Ax-Prover has competitive performance on PutnamBench and outperforms general-purpose LLMs not equipped
with Lean tools as well as state-of-the-art specialized provers on the other datasets, with a significant margin on
the ones we introduce. This gap underscores the potential of Ax-Prover to act as the key AI verification tool for
mathematically grounded scientific reasoning.

Our contributions are threefold: (i) We design Ax-Prover, a lightweight agentic workflow that connects general-
purpose LLMs to Lean tools via MCP, and demonstrate that it performs on par with or surpasses both general-purpose
LLMs and specialized provers across several scientific domains; (ii) We introduce new formalized Lean datasets
covering abstract algebra and quantum physics, complementing existing benchmarks; (iii) We showcase Ax-Prover’s
capabilities as an assistant through a use case where the system collaborated with an expert mathematician to formally
verify the proof of a recent cryptography result.

2 Related Work
Automated theorem proving in Lean has roots in classical approaches such as decision procedures [18, 10] and
heuristic-guided proof search [30, 51], but they face challenges, specifically the former does not handle general mathe-
matical domains (e.g. transcendental functions and complex numbers) and the latter do not before well out of distribu-
tion. More recent work integrates machine learning: from heuristic tuning [56] to premise selection and tactic predic-
tion [28, 27], culminating in transformer-based language models capable of generating Lean proofs [48, 32, 47, 62].
More recent large-scale systems extend this trend by training LLMs on formal proof though distillation, supervised
finetuning and reinforcement learning. Current examples of specialized models are Kimina-Prover [58], the DeepSeek-
Prover family [60, 61, 49], Goedel-Prover 1 and 2 [35, 36], Prover Agent [9], Apollo [46], and Seed-Prover [13]. All
of these are highly specialized provers, which take input a Lean theorem and autonomously produce a proof. A related
line of work is exploring agentic flows that include frontier LLMs and a formal verifier; example include Hilbert [57]
and Aristotle [2]. Although we also adopt a similar approach, some crucial differences exist, namely: (i) we give
the LLM direct access to Lean tools via MCP; (ii) our framework requires no training [2] and does not rely on any

2“Ax” stands for “axiomatic”, reflecting the base principles in mathematics and physics, the domains explored in this work.
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specialized provers [57]; (iii) we demonstrate the effectiveness of our approach on domains other than mathematics;
(iv) we showcase the capabilities of our system as an interactive assistant to human researchers.

Finally, a parallel line of work has explored classical machine learning for supporting experts in theorem proving in
Lean, for example, in premise selection and tactic prediction [25, 11], and more recently through LLMs that connect to
Lean via external interfaces [7, 8, 53]. These approaches illustrate the promise of AI-assisted proving, but they remain
resource-intensive and difficult to adapt across scientific domains. Recent efforts, such as [31], attempt to remedy
this by emphasizing greater adaptability within Lean. At the same time, there is growing interest in human–AI col-
laboration: conversational assistants [17] and “copilot”-style integrations [14] suggest how formal tools can augment,
rather than replace, human reasoning. Our work builds on this trajectory by closing the gap between heavyweight,
specialized provers and lightweight, researcher-friendly systems that can be more readily adapted to the evolving Lean
ecosystem.

3 System Architecture

Figure 1: Left: the multi-agent workflow of Ax-Prover. Right: the tool-enhanced reasoning of the Prover.

We implement Ax-Prover as a multi-agent architecture with three agents, each of which is implemented as an
LLM with specific prompts: the Orchestrator, the Prover, and the Verifier. Following recent agentic designs for
complex tasks such as scientific discovery [26, 63], we avoid a monolithic setup by assigning each specialized agent a
distinct role. This separation enables specialization and modularity: agents can be independently optimized, replaced,
or extended, allowing researchers to adapt Ax-Prover to their own needs without destabilizing the system.

Figure 1 (left) shows our workflow: the Orchestrator receives an unproven Lean statement and forwards it to
the Prover, which iteratively works on the proof by performing reasoning, making calls to MCP Lean tools, and
generating Lean code (Figure 1, right). The Verifier then checks the proof and reports back to the Orchestrator. If the
proof is complete and no error is found, the Orchestrator ends the task; otherwise, it provides feedback to the Prover,
which continues the proving process. Through this closed-loop process, the system incrementally converts unproven
theorems into formally verified Lean proofs. Next, we provide details about the agents and tools.

3.1 Specialized Agents
3.1.1 Orchestrator

The Orchestrator’s role is analogous to a scheduler in distributed systems: it does not perform computation itself but
ensures that computation flows smoothly across agents. It holds three main responsibilities. First, it handles task
assignment, as it receives user input and instructs the Prover accordingly. Next, it manages feedback routing by
taking diagnostic outputs from the Verifier and giving structured feedback to the Prover (if errors are found). This
separation ensures that proof synthesis and evaluation remain distinct while still enabling iterative refinement. Finally,
it decides when to stop the refinement loop. Termination occurs either when the Verifier certifies the proof as
complete and error-free, or when the number of attempts exceeds a configurable threshold.
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3.1.2 Prover

Figure 2: The main steps performed by the Prover to prove a theorem.

The Prover is the constructive core of the system. Its task is to transform unproven Lean theorems into completed
proofs. Theorem proving requires both creativity – finding the right lemma or using the right tactic – and rigor
– ensuring that the structure and Lean code are syntactically correct. To achieve this, the Prover balances LLM-
based heuristic exploration with rigorous Lean formalization aided by the MCP Lean tools made available by the
lean-lsp-mcp (see Section 3.2).

We instruct the Prover to carry out its task following an incremental, step-by-step approach, and to write each
update to the theorem proof to a .lean file. This is for two reasons: first, it satisfies the requirements of the MCP Lean
tools, some of which need a .lean file path to inspect the code contained within; second, it allows the user to inspect
the proof process in real time. In Figure 2, we present Lean code snippets at important stages of this process. Initially,
the Prover identifies target theorems, by scanning Lean files for unfinished proofs marked with sorry, a placeholder
tactic indicating an incomplete proof (top-left). Then, it writes a proof sketch, a coarse-grained natural language
outline of the proof’s logical flow which breaks down a complex proof into more manageable steps (top-right). Next
is formalization, where each step in the sketch is formalized into a Lean statement starting with have and ending
with sorry (bottom-left); this brings into Lean’s proof context new statements that are to be proven from earlier
hypotheses of the theorem. Then, the Prover goes through each step sequentially, proposing Lean tactics to substitute
each sorry. After completing each step, the Prover uses a specific Lean tool, lean diagnostic messages (see
Section 3.2) to assess if the generated step is correct. If critical errors are detected or a sorry is still present, the
Prover attempts to fix the error or correct its reasoning. When all the steps are correctly solved, the Prover ends its
task (bottom-right).

Tool usage is crucial for the Prover to perform its task. This is clearly illustrated in Figure 1 (right), which is
extracted from the LLM log during an experimental run. The figure shows how both exploration and formalization are
achieved through tool-enhanced reasoning, where the Prover uses mcp tools to interact with Lean files (read file
and edit file); identify goals at various points in the proof (lean goal); search for theorems in Mathlib
(lean leansearch); and verify the correctness of its proofs (lean diagnostic messages) This approach
allows the Prover to function like an automated yet cautious mathematician: it drafts a plan, incrementally explores
and implements ideas, verifies their correctness in Lean, and advances only once each step has been validated.

3.1.3 Verifier

The Verifier serves as the final gatekeeper of correctness in our workflow. It neither generates nor modifies proofs: it
only assesses the correctness of the proof generated by the Prover. The Verifier has access to filesystem tools, used
to access the file produced by the Prover, as well as a single Lean tool, lean diagnostic messages, to assess
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the correctness of the proof. The Verifier operates in two steps. First, it compiles the Lean file produced by the
Prover using the lean diagnostic messages tool, parses the returned diagnostic messages, and generates an
error report. Second, it emits a verdict: a proof is considered verified if and only if no level-1 error exists (see Section
3.2) and there are no sorry (or the equivalent tactic admit) present in the file.

At first glance, the Verifier may seem redundant, since it uses the same lean diagnostic messages tool as
the Prover. However, it is needed for two reasons: (i) the Prover may run out of steps (see Section 5.1) and return
an incomplete or incorrect proof, and (ii) it sometimes terminates early despite remaining errors. An independent
Verifier is thus crucial to ensure robustness, mirroring software pipelines where aggressive testing is always checked
by a conservative compiler.

3.2 MCP Tools
As described above, tool use is essential in our approach. We provide the LLM with access to tools via the MCP, a
standard interface that lets LLM agents invoke external services in a uniform, controlled way [41]. We implement two
categories of tools: Filesystem tools and Lean tools. Filesystem tools handle file operations such as read file,
write file, and list directory (see Appendix A.1). Lean tools allow Ax-Prover to perform a variety of
actions crucial for theorem proving. We access these tools through the lean-lsp-mcp project [22], which provides
a standardized interface to the Lean environment and ensures that Ax-Prover always operates on the latest version of
Mathlib. This ensures that we can maintain compatibility for imports, theorem references, and proof construction
without relying on the LLM’s knowledge of the version (or multiple incompatible versions) of Mathlib on which it
was trained. The Lean tools we use fall into four main groups, summarized in Table 1.

Category Tools
Project and
File Management

lean build: Compile and build the Lean project
lean file contents: Get contents of a Lean file
lean declaration file: Find which file contains a declaration

Diagnostics and
Feedback

lean diagnostic messages: Compile code and return diagnostic messages
lean goal: Get the current proof goal at a position
lean term goal: Get goal information for a term
lean hover info: Get hover information for symbols

Code Assistance lean completions: Get completion suggestions
lean multi attempt: Try multiple proof attempts
lean run code: Execute Lean code

Search and
Reasoning

lean leansearch: Search for theorems and lemmas
lean loogle: Search for lemmas by type signature
lean state search: Search proof states
lean hammer premise: Use automated theorem proving

Table 1: Lean tools available on lean-lsp-mcp, organized by functionality.

Note that lean diagnostic messages returns an error log containing scalars indicating the severity of the
errors or messages the tool has returned: 0 if no error is found; 1 for erroneous/incorrect proofs; and 2 for a valid but
incomplete proof, e.g. with sorry, warning, or linter error. A proof is considered correct and complete only if it
compiles, no severity 1 errors are found, and no sorry or admit is present.

4 Datasets
While the application of LLMs to mathematical verification in Lean is evolving rapidly, the availability of compre-
hensive datasets remains limited. At present, only a few open-source datasets are available, with some of the most
notable being MiniF2F [65], PutnamBench [55], and NuminaMath-LEAN [44]. These benchmarks include hard,
high-level math problems from competitions such as the International Mathematical Olympiad (IMO) or the Putnam
exam. Other datasets exist, but have clear limitations. For example, the Deepseek-Prover-V1 Train[20] includes 27k
LLM-generated statements and proofs, but most of them are very simple, and can be solved in 2–3 line (on average)
proofs. Lean Workbook [64] (57k) gathers LLM-generated formalizations of mathematical problems. While it reports
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a 93.5% statement-level accuracy after filtering, subsequent analyses note that a nontrivial fraction of examples still
suffer from semantic errors and hallucinations [38, 59], which limits its reliability.

Current benchmark datasets focus on mathematics and, even within this domain, are centered narrowly on high
school and undergraduate-level competition problems. To enrich the current ecosystem and expand the coverage of
Lean datasets, we create two datasets. The first one AbstractAlgebra (AA), is a Lean 4 dataset of problems drawn
from standard abstract algebra textbooks. Unlike existing math benchmarks, which focus on undergraduate level
competition-style puzzles, AA targets graduate or research-level mathematics, emphasizing deeper abstract concepts
over lengthy step-by-step manipulations. The second dataset is QuantumTheorems (QT), which covers core topics in
foundational quantum mechanics, with problems spanning from density matrices to scaling laws for quantum repeater
networks. By bridging theoretical physics with formal verification methods, QT not only offers an unprecedented
opportunity to test prover agents on quantum mechanics theorems, but it also represents a key step toward evaluating
scientific reasoning models across any scientific discipline grounded in mathematics. In the section below, we provide
more information about these two as well as other datasets we used for our experiments.

4.1 AbstractAlgebra
AbstractAlgebra is a curated dataset of 100 Lean problems extracted from the exercises in Dummit & Foote’s abstract
algebra textbook [23]. The problems were extracted and formalized in Lean using an automatic pipeline (see details
and examples in Appendix B.1). The dataset consists of two subsets: 50 easy problems from Chapter 1.1 and 50
intermediate problems from Chapters 1.2–2.5. The two categories thus reflect the increasing level of difficulty of the
chapters in the book.

As mentioned above, existing datasets focus on high school to undergraduate-level competition mathematics,
which typically involves elementary concepts framed as puzzles that require many reasoning steps. For example,
a competition problem may ask to determine all positive integers a, b such that (a2 + b2)/(ab + 1) 2 Z, which is
conceptually elementary but requires a sequence of clever number-theoretic transformations.

In contrast, the AA dataset is aimed toward research-level mathematics, which involves deeper concepts with fewer
reasoning steps per exercise. For instance, an AA problem may ask: Prove that every element x = sri in the dihedral

group Dn has order 2. By presenting this kind of problems, AA fills the gap between AI-focused formalization efforts,
which largely targets elementary mathematics, and the advanced topics studied by research mathematicians.

Finally, we stress that abstract algebra is foundational to much of mathematics, providing essential tools for re-
search in number theory, geometry, topology, and beyond – indeed, 22 of the 32 primary mathematics categories on
arXiv build upon it [1]. It also underpins important domains outside of mathematics, such as cryptography, physics,
and chemistry. The broad foundational nature of abstract algebra underscores the importance of developing AI proof
systems that perform well on problems in this domain, as this has the potential to accelerate progress across many
scientific fields.

4.2 QuantumTheorems
QuantumTheorems includes 134 problems spanning core areas of quantum theory. These problems introduce unique
challenges, as they require integrating finite-dimensional linear algebra, complex analysis, and matrix theory with
quantum principles such as unitarity, Hermiticity, and measurement postulates. This domain-specific knowledge is
absent from existing datasets of formal proofs, making QT a valuable benchmark for testing and advancing formal
reasoning in physics. QT was generated through an iterative human-in-the-loop process, combining automated proof
synthesis with expert curation (see Appendix B.2 for more details and examples).

We generated problems at two levels of difficulty: basic problems are short (require on average 1–10 line proofs
to solve) and often solvable with standard automation tactics (simp, linarith), e.g., a post-measurement state
is an eigenstate of the measurement projector. Intermediate level problems (requiring 10–50 line proofs to solve) are
solvable with systematic case analysis and orchestration of rewrite rules, such as proving simultaneous diagonalization
of commuting observables.

QT represents a first step toward computer-verified quantum mechanics, addressing the challenge of ensuring
correctness in quantum information protocols and algorithms. The dataset has practical importance beyond research:
as quantum technologies grow more complex, errors in proofs or hidden assumptions can have serious consequences.
For instance, a recent bug in a proof claiming to break lattice-based cryptography – only identified weeks later by
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experts – illustrates the risks of unchecked reasoning in high-stakes domains [50, 15]. QT provides a first-of-its-kind
resource for developing tools which can help detect these mistakes earlier.

4.3 NuminaMath-LEAN
NuminaMath-LEAN [44] is a very recent (August 2025) large-scale collection of approximately 104,000 competition-
level mathematics problems formalized in Lean 4. The dataset is created by the same research group that developed the
Kimina-Prover. They derived NuminaMath-LEAN from NuminaMath 1.5 [34], with problems drawn from prestigious
contests such as the International Mathematical Olympiad (IMO) and the United States of America Mathematical
Olympiad (USAMO).

Each problem includes a formal statement in Lean 4, written either by a human annotator (19.3% of the problems)
or by an autoformalizer model (80.7%) [44]. Out of the total problems, 25% were correctly proved by Kimina-Prover
during its reinforcement learning (RL) training phase (Solved-K), 11% were proved by humans (Solved-H), while
the remaining 64% do not have any proof (Unsolved) [58, 34, 44]. We analyzed problems across the three groups
and observed a clear difficulty gradient: Solved-K < Solved-H < Unsolved. This ordering aligns with the fact
that Solved-H and Unsolved problems could not be handled by Kimina-Prover, providing an implicit measure
of difficulty. The fact that Solved-H proofs are on average longer than those in Solved-K (155 vs. 98 lines) also
offers quantitative evidence consistent with our qualitative assessment. For our experiments, we randomly sampled
300 problems – 100 each from Solved-K, Solved-H, and Unsolved – to create a balanced, representative, and
more budget-friendly benchmark.

4.4 PutnamBench
PutnamBench [55] is a multi-language benchmark designed to evaluate the ability of neural theorem provers to solve
undergraduate-level competition mathematics problems. It includes formalizations of problems from the William
Lowell Putnam Mathematical Competition (1962–2024) across three major proof assistants – Lean, Isabelle, and Rocq.
The Lean subset contains 660 formalized problems, which we focus on in this work. The problems span a broad range
of undergraduate topics, including Algebra, Analysis, Number Theory, Geometry, Linear Algebra, Combinatorics,
Abstract Algebra, Probability, and Set Theory.

Unlike MiniF2F, which is now saturated, PutnamBench remains a challenging benchmark for most provers. More-
over, since it is widely adopted by many models, it serves as a high-value testbed for evaluating our approach against
the best theorem-proving models currently available.

5 Experiments
In this section, we provide details about the experimental setup we implemented (Section 5.1) and the results (5.2),
followed by an analysis of tool usage (5.3) and the challenges and costs of model deployment (5.4).

5.1 Experimental Setup
We divided the benchmarks introduced in Section 4 in two groups: New Benchmarks (including AbstractAlgebra,
QuantumTheorems, and NuminaMath-LEAN) and PutnamBench, reflecting two distinct objectives.

In the tests with New Benchmarks, we evaluated the performance of the Ax-Prover against three strong baselines:

• Claude Sonnet 4 (Sonnet). This baseline allows us to assess how the same LLM used to power our framework
(see below) performs if used outside the agentic flow and without access to MCP tools.

• DeepSeek-Prover-V2-671B (DS-Prover) and Kimina-Prover-72B (Kimina), two specialized Lean provers.

We evaluated all models using pass@1: While this idea is in sharp contrast with previous studies assessing pass with
very high values (see, e.g., [49]), we believe it mirrors real-world usage, where researchers are constrained by time
and budget limits, and cannot run a prover multiple independent times in the hope that one succeeds. For transparency
and reproducibility, we note that while pass@1, for all the baselines, means trying to formalize the entire proof in a
single shot, for Ax-Prover it means performing a sequence of steps (i.e., API calls) in which reasoning and tool calls
are interleaved in a singular attempt to build the final proof–i.e., with no parallelization. For these experiments, we
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powered Ax-Prover using Claude Sonnet 4 [4]. Furthermore, to stay within budget, we capped Ax-Prover API calls at
200 and set a 25-minute timeout. For all models, we computed the final results by running an external Lean compiler
on the generated files, and considered a proof correct if it compiled and included no sorry.

The second benchmark group, which includes PutnamBench only, aims to evaluate Ax-Prover on one of the most
challenging public benchmarks and compare its performance against existing state-of-the-art provers. Accordingly,
we did not run baselines and instead directly compared our results with those reported on the official leaderboard [54].
For this test, we powered Ax-Prover with Sonnet-4.5, removed the 25-minute timeout, and increased the max number
of API calls at 400, while still running it with pass@1, as defined above.

5.2 Results

Dataset Subset Ax-Prover Sonnet DS-Prover Kimina
NuminaMath solved-K 81% 7% 48% 100%†

solved-H 47% 8% 14% 0%†

unsolved 26% 1% 18% 0%†

total 51% 5% 28% 31%
AbstractAlgebra easy 72% 10% 26% 12%

intermediate 56% 6% 22% 14%
total 64% 8% 24% 13%

QuantumTheorems easy 100% 54% 88% 72%
intermediate 92% 18% 48% 34%
total 96% 40% 61% 57%

Table 2: Models’ performance on NuminaMath, AA, and QT. † The results on NuminaMath for Kimina are reported
from [44], and where obtained during its RL training phase with, on average, pass@68.

New Benchmarks We report the results for this group in Table 2. On the Numina dataset, Ax-Prover scored 51%
accuracy, outperforming DS-Prover (28%) and Kimina (31%) by a similar margin, while Sonnet only got 5% accuracy.
Particularly relevant is the performance of Ax-Prover on Solved-H, where it solves almost half of the problems, and
on Unsolved (26%). Notably, due to autoformalization (see Section 4.3), some theorems are ill-posed: during
testing, Ax-Prover spotted them, and reported the error (see Appendix C).

On AA the gap in performance is striking, with Ax-Prover (64%) outperforming DS-Prover by 40%, while both
Kimina (13%) and Sonnet get a very poor performance (8%). We suggest this is because the AA dataset is largely
out-of-distribution for DS-Prover and Kimina. In fact, these models are trained primarily on Mathlib, which covers
only a minimal subset of abstract algebra, or on undergraduate competition-level math problems, which are qualitative
differently from those in AA (See Section 4.1).

On the QT dataset, Ax-Prover achieves perfect performance on the easy split and 92% accuracy on the intermedi-
ate split, yielding 96% accuracy overall. This represents a substantial gap compared to DS-Prover (61%) and Kimina
(57%), with Sonnet falling well behind at 40%. Also in this case, we suggest that the performance gap stems from our
approach’s flexibility to adapt across scientific domains, in contrast to the over-specialization of specialized models.
To showcase the differences between the models, let’s consider the proofs that quantum observables are Hermitian
matrices (full proofs available in Appendix D.1). DS-Prover misused the Hermitian field, misunderstanding its type,
while Sonnet made a more sophisticated effort but encountered a rewrite pattern mismatch, which highlights its dif-
ficulties in managing Lean environment. In contrast, Ax-Prover succeeded through a systematic approach, explicitly
applying the Hermitian property to diagonal elements, using the definition of conjugate transpose, and connecting it
to the fact that a complex number equal to its conjugate is real. The case highlights that successful formal theorem
proving requires careful, step-by-step reasoning, a solid grasp of type theory, and familiarity with library theorems –
demonstrating that clarity and correctness outweigh clever shortcuts in formal verification.

PutnamBench Table 3 reports the results for the top 10 scorers on PutnamBench.3 In the “Compute” column,
pass@ indicates the number of independent attempts to solve a proof. avg. pass@ is used for Hilbert, an agen-

3See the full leaderboard at [54].
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tic framework that parallelizes reasoning and verification at different levels [57]. The exact definition of this met-
ric is unclear; our best assumption is that it reflects the average number of calls to Hilbert’s sub-agents. Similarly,
medium refers to a specific test setup for Seed-Prover, in which the model is evaluated with parallelized refinement
processes [13]. On this benchmark, Ax-Prover achieves 14% accuracy, placing third in the table. While this result is
lower than the top scorers, it is important to note that it was obtained at a fraction of the cost of the top-performing
models (see the “Compute” column).

Model Accuracy Compute
Hilbert 72% [462] avg. pass@1840
Seed-Prover 51% [329] medium
Ax-Prover⇤ 14% [92] pass@1†
Goedel-Prover-V2 13% [86] pass@184
DeepSeek-Prover-V2 7% [47] pass@1024
DSP+ 4% [23] pass@128
Bourbaki 2% [14] pass@512
Kimina-Prover-7B-Distill 2% [10] pass@192
Self-play Theorem Prover 1% [8] pass@3200
Goedel-Prover-SFT 1% [7] pass@512
Gemini-2.5-Pro 0.5% [3] pass@1
GPT-4o 0.2% [1] pass@10
Claude-3.7-Sonnet 0% [0] pass@1

Table 3: Accuracy results on PutnamBench (% and abso-
lute number of solved problems). † Remember that for Ax-
Prover, pass@1 is made of multiple steps, see Section 5.1.

Overall, the results in this section indicate that Ax-
Prover delivers strong performance across the board,
ranking among the top models in mathematics and out-
performing others in physics. Also, they highlight
two key limitations of current approaches: specialized
provers fail to generalize beyond their training domains,
while general-purpose LLMs, while creative, cannot
produce rigorous Lean proof. The fact that Ax-Prover
nearly doubles the performance of the standalone LLM
using the same model (Sonnet) demonstrates that com-
bining agentic reasoning with Lean tool integration is es-
sential for robust theorem proving across domains. We
examine this aspect in more detail in the next section.

5.3 Analysis of Tool Usage
To measure the impact of tool usage on our approach,
we analyzed the tool calls done by the Prover over the
100 problems we tested on the challenging NuminaMath
Unsolved subset. We found that the Prover made an
average of 100.76 tool calls per run. Tool usage is highly
reliable, with success rates above 99%.4

Table 4 reports the 10 most frequently used tools. At the top is edit file, as the Prover updates the Lean
file at each step. lean diagnostic messages follows, reflecting explicit instructions to verify each proof step.
lean goal exposes the current proof state, while lean loogle and lean leansearch enable the Prover to
search for relevant theorems in the library. Importantly, these tools are used autonomously, without additional guid-
ance. Collectively, these statistics illustrate how Ax-Prover leverages a tight feedback loop of editing, goal inspection,
search, and diagnostics.

Tool Calls
edit file 36.79
lean diagnostic messages 30.73
lean goal 8.17
lean loogle 5.88
lean leansearch 4.32
file contents 3.00
write file 2.71
read text file 2.24
lean run code 2.05
lean hover info 1.76
Table 4: Tool usage statistics.

Our assumption is that tool usage enhances proof quality by allowing
Ax-Prover to use less common tactics. To test this, we analyzed the unique
tactics used in the proofs generated by Ax-Prover, Kimina, and DeepSeek,
under the hypothesis that a larger set of tactics reflects greater creativity
(see the full list of tactics per model in Table 5). The three models share
28 tactics, but Ax-Prover uses 9 tactics not employed by DS-Prover or
Kimina, whereas these models combine to use only three tactics absent in
Ax-Prover. This finding supports our hypothesis that integrating frontier
LLMs with Lean tools enhances creative exploration in proof construction.

5.4 Deployment Analysis
Besides performance, deployment complexity is critical when using AI
models in real-world scenarios. Here we compare prover systems in this
respect. DS-Prover and Kimina require GPU-accelerated, high-spec machines and are not available through model
as a service (MaaS) providers.5 We hosted DeepSeek and Kimina on Google Cloud: DeepSeek on an A3 Ultra VM

4The only exception is search in Filesystem tools, with 80%. However, this results from the Prover searching for files that do not exists.
5For instance, while DeepSeek-Prover-V2-671B was previously hosted by Novita [21], this endpoint now redirects to the general DeepSeek-V3

model
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with eight H200-141GB GPUs, and Kimina on an A2 High GPU VM with eight A100-40GB GPUs. Deployment is
burdensome and demands MLOps expertise – users must match hardware specs, configure distributed runtimes, debug
serving issues, and contend with scarce GPU availability, since cloud providers enforce strict quotas and long queues
for H100/H200 GPUs. This hinders reproducibility even for well-funded teams. In contrast, Ax-Prover relies only on
API calls, requiring no infrastructure beyond basic client access, and it can be executed locally on a client machine or
remotely in a lightweight container.

On monetary costs, running DS-Prover and Kimina on 1000 datapoints cost approximately $300 and $2000, re-
spectively, while Ax-Prover cost about $4000. At first glance, our approach appears more expensive but only because
we evaluate specialized models with pass@1. Had we followed the common practice of running them with higher
pass@n values, the cost of these specialized models would have far exceeded ours. Furthermore, consider that on
PutnamBench, DS-Prover was run with a pass@1024, thus leveraging way more computational resources, and only
got 47 correct theorems, while Ax-Prover got 92. Moreover, general-purpose LLMs are on a rapid trajectory of im-
provement: each new generation delivers stronger reasoning at lower cost, suggesting that the relative efficiency of
Ax-Prover will only increase over time.

The deployment and cost barriers of specialized models also help explain why they have not achieved widespread
use beyond benchmark settings such as IMO-style mathematics problems. For most researchers, the need to manage
specialized hardware, navigate GPU quotas, and bear high costs makes these systems effectively unusable in practice.
Ax-Prover is more accessible to researchers not only because it eliminates these barriers, but also because it was
explicitly designed to act as a supportive assistant, as we show in the next section.

6 Use Case: Researcher-Friendly Verification
Ax-Prover is able to engage in productive collaborations with human researchers by verifying intermediate proof
steps, providing precise feedback, and guiding the overall direction of the proof. This capability differentiates our
framework from existing specialized provers, which generally attempt to complete proofs in a single pass without any
interaction with their external environment. Thus, Ax-Prover should be viewed not merely as a backend system but as
an active collaborator in mathematical and scientific reasoning. In this Section, we present a concrete demonstration
of Ax-Prover’s capabilities as an assistant.

One of the authors of this paper is an expert mathematician who collaborated with Ax-Prover to prove a recent
cryptography result, A New Algorithm for Computing Branch Number of Non-Singular Matrices over Finite Fields [40]
(see the full case study in Appendix F). The task involved two main steps, namely: formalizing the paper’s statements
in Lean, and verifying the main claim. The mathematician jointly worked with Ax-Prover to structure the proof,
validate lemmas, and complete the verification. Ax-Prover supported the whole process by checking intermediate
lemmas and guiding proof strategies. In what came as a surprise, it also revealed an error in the original approach.
This shows that Ax-Prover can not only reproduce known mathematical results at the cutting edge of research, but
also advance the state of knowledge by providing formal verification of correct results and expose incorrect ones.
Notably, the whole process lasted two working days and was carried out locally on the laptop of the mathematician.
The outcome of the effort is a proof of over 2000 lines of Lean code.6

To better understand the value of Ax-Prover’s contribution to the proof defined above, consider the formalization of
the Prime Number Theorem. Terence Tao and Alex Kontorovich initiated the Lean translation, but the project was only
completed weeks later by Math, Inc.’s Gauss agent running on Morph.AI’s Infinibranch cluster [39]. While ultimately
successful, this represented a massive engineering effort spanning several weeks for a well-known proof of comparable
difficulty to our cryptography case study, which, by contrast, required only two days, a single mathematician, and a
laptop.

This comparison underscores the power of Ax-Prover in enabling fast and efficient verification of research-level
proofs of new results. Besides its ability to perform end-to-end tasks, Ax-prover is able to act as a collaborative
teammate, by exposing intermediate reasoning, suggesting next steps, and accepting and providing guidance.

6The resulting Lean blueprint can be made available upon request.
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7 Conclusions
We introduce Ax-Prover, a novel agentic workflow that combines the broad reasoning capabilities of general-purpose
LLMs with the formal rigor of Lean’s proof environment. Our system addresses three major limitations of current
specialized provers: (i) limited generalizability to scientific domains beyond mathematics and rapid obsolescence as
libraries like Mathlib evolve; (ii) inability to collaborate effectively with human experts and utilize external tools;
and (iii) high engineering and maintenance costs.

Evaluations show that Ax-Prover ranks third on the challenging PutnamBench and outperforms baselines on the
public NuminaMath-LEAN dataset as well as on AbstractAlgebra and QuantumTheorems, two new datasets we
introduce that focus on research-level mathematics and physics. These benchmarks not only provide new testbeds for
cross-domain reasoning in future agents but also represent a crucial milestone in evaluating reasoning models in any
scientific discipline grounded in mathematics.

These results highlight Ax-Prover’s superior domain generalization, in contrast to specialized models, which strug-
gle to adapt to novel domains beyond their training data. More importantly, they show that Ax-Prover has the potential
to serve as a deep formal reasoning assistant for scientific artificial intelligence in domains requiring extended chains
of rigorous inference. The combination of multi-disciplinary reasoning with rigorous formal verification positions
the system to support AI-driven scientific discovery wherever verifiably error-free reasoning is essential. We attribute
this performance to our multi-agent architecture and its tight integration with Lean tools via the MCP. By iteratively
editing proofs, inspecting goals, and diagnosing errors, Ax-Prover behaves like a cautious mathematician, systemati-
cally exploring and verifying each step. The frequency and effectiveness of tool use in our experiments confirm their
essential role in improving proof quality and enabling human-like debugging.

Furthermore, we showed in our case study on cryptography that Ax-Prover is not only able to prove theorems
autonomously, but it can also engage in fruitful collaboration with human researchers. Working alongside it, the
mathematician used it as a partner for structuring arguments, validating intermediate lemmas, and diagnosing proof
failures. This interaction demonstrates how Ax-Prover can adapt to expert guidance, accelerate verification workflows,
and even surface errors in the informal reasoning.

Looking ahead, we plan to enhance Ax-Prover by introducing parallelized agents, enabling the framework to
explore multiple proof paths simultaneously. This will increase its creativity and success rate in formalizing complex
proofs. We also plan to integrate a long-term memory module to store information from past proofs and human
interactions. This capability will allow Ax-Prover to participate not only in standalone problems but also in extended,
collaborative research projects requiring sustained expert guidance. These developments will advance us towards our
broader goal of verifiable scientific artificial intelligence, where AI systems contribute to scientific discovery through
formally validated reasoning.

A Tools
A.1 File system
Full list of Filesystem tools:

• read file

• read multiple files

• write file

• edit file

• create directory

• list directory

• list directory with sizes

• directory tree

• move file
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• search files

• get file info

• list allowed directories

B Datasets
B.1 Abstract Algebra
B.1.1 Dataset Generation

We used a basic pipeline to build the AbstractAlgebra dataset. First, we extracted all raw text from PDFs of Abstract

Algebra by Dummit and Foote [23] and Abstract Algebra: Theory and Applications by Judsen [29] using Mistral’s
API. We then processed the raw text by using Claude-Sonnet-3.7 [3] to extract a list of natural language mathematical
statements, which include exercises, derivations, lemmas, propositions, and theorems within the text. Next, we used
a Claude-Sonnet-3.7 agent to formalize each natural language statement in Lean. To ground the formalization in
Mathlib and prevent the agent from reinventing definitions, we passed the agent a Lean file at the start of the process
containing relevant definitions for that section, e.g., dihedral groups, roots of unity, or the field extension Q(

p
2). The

agent could reference these definitions and was required to add each formalized statement directly to this file, but was
explicitly prohibited from introducing new definitions. The agent generated the top 3 formal statements in Lean for
each natural language statement and refined each attempt up to 3 times with feedback from the Lean compiler. We then
built the dataset by retaining only those pairs of natural language and formal language statements that corresponded to
exercises from the source texts.

B.1.2 Example

This is an example of a theorem statement in the AbstractAlgebra dataset, formalized from Exercise 3 in Chapter 1.2
of Dummit and Foote [23].

import Mathlib

-- Variables for dihedral group

variable {n : Nat} {i : Int}
local notation "D_n" => DihedralGroup n
local notation "r" => DihedralGroup.r (1 : ZMod n)
local notation "s" => DihedralGroup.sr (0 : ZMod n)

/-- Use the generators and relations to show that every element of D_n not a power of
r has order 2. -/

theorem exercise_3_part1 {x : D_n} (h : x = s * r ˆ i) : orderOf x = 2 := by
sorry

B.2 QuantumTheorems
B.2.1 Dataset Generation

The dataset was generated through an iterative human-in-the-loop process combining automated proof synthesis with
expert curation. The initial set of 134 theorems were manually extracted from [43]. An automated coding agent
(Claude Opus [6]) first generated formal statements and proof attempts for the theorems, producing both complete
proofs and partial derivations. A quantum physics expert then reviewed each statement and proof, identifying gaps,
correcting errors, and standardizing operator definitions to ensure that each question was well formed and solvable.
The final dataset replaces these proofs with sorry statements.
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B.2.2 Example

This is an example of a theorem statement in the QuantumTheorems dataset, stating that a post-measurement state is
an eigenstate of the measurement projector. Notably, the problem setup involves a number of custom definitions of
concepts in quantum mechanics.

import Mathlib.Analysis.InnerProductSpace.Basic
import Mathlib.Data.Complex.Basic
import Mathlib.Data.Matrix.Basic
import Mathlib.LinearAlgebra.Eigenspace.Basic

open BigOperators Complex

/-- Quantum state as normalized vector -/
structure QuantumState (n : N) where

vec : Fin n ! C
normalized : ⌃ i, Complex.normSq (vec i) = 1

/-- Projector as idempotent matrix -/
structure Projector (n : N) where

mat : Matrix (Fin n) (Fin n) C
idem : mat * mat = mat
hermitian : mat.conjTranspose = mat

/-- Matrix-vector multiplication -/
noncomputable def matVec {n : N} (M : Matrix (Fin n) (Fin n) C) (v : Fin n ! C) :

Fin n ! C :=
fun i => ⌃ j, M i j * v j

/-- Measurement probability -/
noncomputable def measureProb {n : N} (P : Projector n) ( : QuantumState n) : R :=

⌃ i, Complex.normSq ((matVec P.mat  .vec) i)

/-- Norm of a vector -/
noncomputable def vecNorm {n : N} (v : Fin n ! C) : R :=

Real.sqrt (⌃ i, Complex.normSq (v i))

/-- Scale a vector by a real number -/
noncomputable def scaleVec {n : N} (r : R) (v : Fin n ! C) : Fin n ! C :=

fun i => r · (v i)

/-- Check if a vector is an eigenvector with eigenvalue lambda -/
def isEigenvector {n : N} (M : Matrix (Fin n) (Fin n) C) (v : Fin n ! C) (lambda : C

) : Prop :=
v 6= 0 ^ matVec M v = fun i => lambda * v i

/-- QT_366: Post-measurement state is eigenstate of measurement projector -/
theorem QT_366_post_measurement_eigenstate {n : N} (P : Projector n) ( :

QuantumState n)
(h_nonzero : measureProb P  6= 0) :
let  ’ := matVec P.mat  .vec
isEigenvector P.mat  ’ 1 := by
sorry

C Detected Autoformalization Error
As noted in Section 5.2, 19.7% of Numina’s problems were generated using autoformalization models. While these
pipelines enable large-scale dataset construction, they occasionally produce ill-posed theorems that cannot be satisfied
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in Lean.
During evaluation, Ax-Prover successfully identified such a case and proved the negation of the statement.

import Mathlib

theorem number_theory_3098 (p1 p2 p3 p4 : N) (hp1 : p1.Prime) (hp2 : p2.Prime)
(hp3 : p3.Prime) (hp4 : p4.Prime) (h1 : p1 < 100) (h2 : p2 < 100) (h3 : p3 < 100)
(h4 : p4 < 100) (h5 : p1 6= p2) (h6 : p1 6= p3) (h7 : p1 6= p4) (h8 : p2 6= p3)
(h9 : p2 6= p4) (h10 : p3 6= p4) (h11 : p1 = 1 _ p1 = 2 _ p1 = 3 _ p1 = 4 _ p1 = 5
_ p1 = 6 _ p1 = 7 _ p1 = 9)
(h12 : p2 = 1 _ p2 = 2 _ p2 = 3 _ p2 = 4 _ p2 = 5 _ p2 = 6 _ p2 = 7 _ p2 = 9)
(h13 : p3 = 1 _ p3 = 2 _ p3 = 3 _ p3 = 4 _ p3 = 5 _ p3 = 6 _ p3 = 7 _ p3 = 9)
(h14 : p4 = 1 _ p4 = 2 _ p4 = 3 _ p4 = 4 _ p4 = 5 _ p4 = 6 _ p4 = 7 _ p4 = 9)
(h15 : p1 6= p2 ^ p1 6= p3 ^ p1 6= p4 ^ p2 6= p3 ^ p2 6= p4 ^ p3 6= p4) :
p1 + p2 + p3 + p4 = 190 := by sorry

The first line of the proof sketch that Ax-Prover generated for this problem was

This theorem has contradictory premises: the sum must be 17, not 190.

Upon inspection, it is clear that 4 natural numbers belonging to the set {2, 3, 5, 7} cannot sum to 190. As an additional
exercise, we changed

p1 + p2 + p3 + p4 = 190 := by sorry

to its negation

(p1 + p2 + p3 + p4 = 190) = False := by sorry

changing the original theorem statement to prove the negation which Ax-Prover was able to do, thus proving that
the original theorem was not provable. This behavior highlights two strengths of the agentic loop:

1. Robustness to noise. The agent does not blindly attempt to complete invalid statements but can detect contra-
dictions early.

2. Transparency. By surfacing diagnostic messages directly from Lean, Ax-Prover provides clear evidence that
the statement is ill-posed, enabling researchers to filter or repair dataset items.

We see this as an important complement to raw accuracy metrics: beyond solving valid theorems, a reliable prover
should be able to recognize when formalization errors make a proof impossible.

D Proofs
D.1 QuantumTheorems Example Analysis
We present here the attempts to prove that diagonal matrix elements of a quantum observable in a finite-dimensional
Hilbert space are real. Concretely,

Let A be a quantum observable in an n-dimensional Hilbert space. Then for every i = 1, · · · , n, the imaginary part
of the element Aii vanishes.

This entry in the dataset comes with a custom definition of an observable:

/-- An observable is a Hermitian operator -/
structure Observable (n : N) where

matrix : Matrix (Fin n) (Fin n) C
hermitian : matrix.IsHermitian
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D.1.1 DeepSeek’s Attempt (Failed)

DeepSeek’s approach was fundamentally flawed from the start:

theorem observable_diagonal_real {n : N} (A : Observable n) (i : Fin n) :
(A.matrix i i).im = 0 := by

have h := A.hermitian
have h1 := congr_arg (fun x => x i i) h
simp [Matrix.ext_iff, Matrix.conjTranspose_apply, Complex.ext_iff] at h1 `
<;>
aesop

Critical Error:
tactic ’aesop’ failed, made no progress

Analysis: DeepSeek attempted to use A.hermitian directly as a proof, but this term has type Matrix.IsHermitian,
not the equality type required by congr arg. The error message indicates that the tactic aesop failed because there
was a fundamental type mismatch. This shows a misunderstanding of Lean’s type system. The hermitian field is a
proof that the matrix satisfies the Hermitian property, but it’s not directly the equality we need to prove.

D.1.2 Sonnet’s Attempt (Failed)

Sonnet made a more sophisticated attempt but still failed:

theorem observable_diagonal_real {n : N} (A : Observable n) (i : Fin n) :
(A.matrix i i).im = 0 := by

have h := A.hermitian
rw [Matrix.IsHermitian.ext_iff] at h
specialize h i i
rw [Matrix.conjTranspose_apply, Matrix.star_apply] at h
exact Complex.ext_iff.mp h.symm |>.2

Critical Error:
Tactic ‘rewrite‘ failed: Did not find an occurrence of the pattern

Matrix.conjTranspose ?M ?j ?i
in the target expression

star (A.matrix i i) = A.matrix i i

Analysis: Sonnet understood that it needed to work with the Hermitian property and tried to extract information
about diagonal elements, but made an error in pattern matching during the rewrite step. The approach was on the right
track but was executed incorrectly.

D.1.3 Ax-Prover’s Attempt (Successful)

Ax-Prover succeeded with a systematic, step-by-step approach:

theorem observable_diagonal_real {n : N} (A : Observable n) (i : Fin n) :
(A.matrix i i).im = 0 := by

-- Step 1: Use the fact that A is Hermitian

have h1 : A.matrix.conjTranspose = A.matrix := by
exact A.hermitian

-- Step 2: Apply this to diagonal element (i,i)

have h2 : (A.matrix.conjTranspose i i) = (A.matrix i i) := by
rw [h1]

-- Step 3: By definition of conjugate transpose

have h3 : (A.matrix.conjTranspose i i) = star (A.matrix i i) := by
exact Matrix.conjTranspose_apply _ _ _
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-- Step 4: Combine to get star (A.matrix i i) = A.matrix i i

have h4 : star (A.matrix i i) = A.matrix i i := by
rw [ h3, h2]

-- Step 5: A complex number equals its conjugate iff it’s real

have h5 : (A.matrix i i).im = 0 := by
have : (starRingEnd C) (A.matrix i i) = A.matrix i i := h4
exact Complex.conj_eq_iff_im.mp this

exact h5

E Tactics
In Table 5 we report the tactics used by each model.

F Case Study: Verifying math in classical cryptographic papers
In this case study, we illustrate how one of our researchers used Ax-Prover to verify the correctness of mathematical
results used in cryptographic research.

As a concrete example, we focus on the recent (May 2024) cryptographic paper A New Algorithm for Computing

Branch Number of Non-Singular Matrices over Finite Fields from arXiv [40]. This work introduces a novel algorithm
for computing the branch number – a fundamental metric used to assess the strength of block ciphers such as AES
[42], PRINCE [12], and Grøst [24].

The paper begins with Theorem 1, which offers an alternative characterization of the branch number. Traditionally,
for an invertible n⇥ n matrix M of order n > 1 over a finite field Fq of order q, the branch number is defined as

B(M) = min
�
wh(x) + wh(Mx) : x 2 Fn

q
where x 6= 0

 
, (1)

where wh(x) is the Hamming weight (the number of nonzero entries in x). Theorem 1 gives an alternate definition of
the branch number that is more amenable to computation than the classical version:

The branch number of an invertible matrix M 2 Mn(Fq) is given as

B(M) = min

⇢
min{h(M,x), h(M�1, x)} : x 2 Fn

q
, 1  wh(x) 

�
n+ 1

2

⌫�
, (2)

where h(M,x) = wh(x) + wh(Mx).

For cryptographers, this makes a practical difference: it enables fast evaluation of candidate matrices when de-
signing new lightweight or high-performance ciphers. The authors demonstrate in Theorem 4 [40] that their algorithm
achieves significant complexity gains over the naive O(n2qn) approach for finite fields of order q � 4 and square
matrices of order n � 4.
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Tactic Ax-agent DeepSeek Kimina
apply X X X
assumption X X X
by cases X X X
calc X X X
cases X X X
change X
classical X X
congr X X X
constructor X X X
contradiction X X X
decide X X
exact X X X
exact mod cast X X X
exfalso X X X
ext X X X
funext X X
generalize X
induction X X X
injection X
intro X X X
intros X
left X X
native decide X X
norm cast X
obtain X X X
omega X X X
push cast X
rcases X X X
refine X X X
replace X X
rfl X X X
right X X
rintro X X X
rw X X X
rwa X X
show X X
simp X X X
simp all X X X
simpa X X X
specialize X
subst X X X
subst vars X
suffices X
trans X
unfold X

Table 5: Tactics used by Ax-agent, DeepSeek, and Kimina. An ”X” indicates the model uses the tactic.
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F.1 Formalize: Single Step

To formally verify the math in this paper, we used an autoformalization agent to formalize statements, verified that
the formalization was correct, before passing those statements to Ax-Prover.

We show the process of proving one step in the paper (the full lean certificate can be provided upon request). The
figure below shows the current verification state highlighted in green, while the next step awaiting verification appears
in yellow.

F.2 Verification: Single Step
We highlighted the relevant theorems or lemmas and prompted Ax-Prover to generate a complete proof for each se-
lected statement. Ax-Prover iteratively refined the proof, checking each step for correctness until the system confirmed
its validity. Unlike standard LLM output, this process ensured full mathematical soundness, with Ax-Prover automat-
ically searching for relevant results, reading and updating the file, diagnosing errors, and managing proof goals.

Some expert human oversight was required on 2 steps to properly formalize statements passed to the prover, but
beyond these isolated interventions, the system operated autonomously. After several iterations, it produced a fully
verified proof of each step in just a few minutes. The following prompt illustrates this process for the example above:

Prompt

Prove this statement (with the formalized step above highlighted as context).
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Response

The statement is a simple set-theoretic observation. We start with all low-weight vectors x and look at the
values wH(x) + wH(Mx), where wH is the Hamming weight and M is some matrix.

• Without constraints: We consider all low-weight vectors.

• With constraints: We only consider those low-weight vectors where the output M x also has low weight.

Clearly, if you add an extra condition (“M x has low weight”), you can only make the set smaller or
equal—never larger—because you’re restricting the set of vectors you’re looking at.
The proof just formalizes this obvious fact:

1. Take any element in the constrained set.

2. By definition, it comes from some vector x that satisfies the extra condition.

3. But x also satisfies the conditions for the unconstrained set (because the unconstrained set has fewer
requirements).

4. So the element belongs to the unconstrained set as well.

This shows the constrained set is a subset of the unconstrained set.

We now present an example that required expert oversight. Specifically, the Ax-Prover was unable to verify the
correctness of statement (3) shown below:

To guide Ax-Prover, an expert user provided the following prompt:

Prompt

You have defined the sets B,C,D with A = min
�
B,min(C,D)

�
 n+ 1. Lets do this by cases: If minC >

minD and minD > n + 1, then min(C,D) > n + 1, so min(B,min(C,D)) = min(B). The other case is
easier.

The Ax-Prover then successfully proved the statement using the provided hint:
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Response

VERIFICATION COMPLETE - STEPS:

1. Define the minima: Let
B := min{wH(x) + wH(Mx) | x 2 L},

C := min{wH(x) + wH(Mx) | x 2 H1},

D := min{wH(x) + wH(Mx) | x 2 H2}.

where L = low-weight set, H1 = high-weight with wH(Mx)  (n + 1)/2, H2 = high-weight with
wH(Mx) > (n+ 1)/2. Then

A := Branchnumber(M) = min(B, min(C,D)).

2. Upper bound: For invertible M ,
A  n+ 1.

3. High–high set bound: If x 2 H2, then

wH(x) + wH(Mx) > n+ 1 =) D > n+ 1.

4. Case analysis:

• C  D ) min(C,D) = C ) A = min(B,C).

• C > D ) min(C,D) = D > n+1. Since A = min(B,D)  n+1, we get B  n+1 and thus
A = B = min(B,C).

5. Conclusion:
A = min(B,C).

The term D never affects the branch number.

F.3 Consolidation: Complete Certificate
Once all steps were verified, they were integrated into a single proof, producing a final file that formally certifies the
alternate definition is equivalent to the original, exactly as proposed in the paper.
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F.4 Correctness, Verification, and Takeaways
The outcome of our work is a formally verified certificate ensuring the correctness of Theorem 1. During the course
of constructing this certificate, we identified a critical error in the original proof. Specifically, the issue arises in Step
2 of the proof:

Here, the authors fail to ensure that the sets over which they take minima are non-empty. For example, in the
simplest case where M = I (the identity matrix), the middle term reduces to

min
⇢
h(M,x) | x 2 Fn

q
,

�
n+ 1

2

⌫
< wh(x)  n,wh(x) 

�
n+ 1

2

⌫�
.

In this case, the constraints ⌅
n+1
2

⇧
< wh(x) and wh(x) 

⌅
n+1
2

⇧

are contradictory, so the underlying set is empty. Nevertheless, the original proof proceeds under the assumption that
this minimum is well-defined, a subtle yet significant oversight.

This matters for two reasons:

1. Logical correctness: Reasoning about the empty set is problematic (all statements are vacuously true) which
can lead to unsound conclusions. For example, let

S = {x 2 Z | x = 3 and x is even }.

Take y 2 S, then y = 3 and y is even, so this implies that 3 is even.

2. Software implementation: Computing the minimum of an empty set is undefined in standard programming
environments and would trigger a runtime error if translated directly into code.

Our formal verification system flagged these issues because it could not establish the truth of the corresponding
statements, revealing logical gaps in the proof. Nevertheless, the authors’ final result remains correct despite the
critical error in their proof.

G Case Study 2: Quantum Cryptography
Quantum cryptography seeks security guarantees that are statistical; derived from the laws of physics and information
theory, rather than computational. An important example is quantum key distribution (QKD), a key–establishment
protocol in which two parties certify secrecy by testing quantum correlations rather than assuming limits on an adver-
sary’s computing power. Because these guarantees rest on first principles in linear algebra, probability, and quantum
mechanics, the field is an especially natural fit for automated theorem proving: formal proofs can turn widely cited
derivations into reusable components that compose into end-to-end security arguments.

Our second use case focuses on the Lo–Chau security framework [37], reproduced in this work. That paper laid
the foundations of modern QKD by reducing security to verifiable statements about entanglement and then to classical
probabilistic reasoning, and it informed subsequent analyses such as the Shor–Preskill proof of BB84 [52]. Within
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that framework, a key step is to convert a physical test, high fidelity to R EPR pairs, into an information-theoretic
guarantee of low entropy and therefore limited eavesdropper information.

Using Ax-Prover in interactive mode, we proved in Lean the entropy bound that implements this conversion,
Lo–Chau’s Lemma 1 (High fidelity implies low entropy), and packaged it as a library lemma for downstream use
(see Section G). This result illustrates how a tool-based prover can assist domain experts in translating physics-style
arguments into machine-checked mathematics, strengthening the statistical-security foundations on which modern
quantum cryptography is built.

In what follows, we cite and explain in detail the lemma and corresponding lean certificate.

G.1 Quantum Key Distribution Lemma
Let ⇢ be a density matrix on a 22R-dimensional Hilbert space. If its fidelity with the ideal R-singlet state satisfies
hR singlets | ⇢ | R singletsi > 1� � with 0 < � ⌧ 1, then

S(⇢) < �(1� �) log2(1� �) � � log2

⇣ �

22R � 1

⌘
.

This is the form reproduced in this work from the Lo–Chau reprint [37]. Here, however, instead of the statement � ⌧ 1
we used: �  1� 1

22R�1 )
The fidelity condition implies the largest eigenvalue of ⇢ is at least 1 � �. Since von Neumann entropy is

Schur-concave, the maximal entropy under this constraint is achieved by the extremal spectrum
�
1��, �

22R�1 , . . . ,
�

22R�1

�
,

which yields the stated bound. Our Lean certificate for this result follows this reduction and checks the necessary con-
cavity and normalization facts. This lean certificate can be made available upon request.

In the Lo–Chau security reduction, the lemma turns “almost-perfect EPR pairs” into a quantitative entropy bound
that, together with standard information-theoretic tools, limits an eavesdropper’s knowledge of the final key. Making
this step machine-checked enables principled composition with other verified components in formal QKD security
proofs. Thus, Ax-Prover bridges formal reasoning and quantitative quantum information theory: results such as the
Lo–Chau entropy bound no longer have to be taken as a black box, but instead become certified components, ready
for use in end-to-end formal verification of QKD security proofs.
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